![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funco | Structured version Visualization version GIF version |
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
funco | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmo 6564 | . . . . 5 ⊢ (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧) | |
2 | funmo 6564 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦) | |
3 | 2 | alrimiv 1931 | . . . . 5 ⊢ (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦) |
4 | moexexvw 2625 | . . . . 5 ⊢ ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
5 | 1, 3, 4 | syl2anr 598 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
6 | 5 | alrimiv 1931 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
7 | funopab 6584 | . . 3 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
8 | 6, 7 | sylibr 233 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
9 | df-co 5686 | . . 3 ⊢ (𝐹 ∘ 𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} | |
10 | 9 | funeqi 6570 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
11 | 8, 10 | sylibr 233 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 ∃wex 1782 ∃*wmo 2533 class class class wbr 5149 {copab 5211 ∘ ccom 5681 Fun wfun 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-fun 6546 |
This theorem is referenced by: funresfunco 6590 fncofn 6667 fncoOLD 6669 fco3OLD 6752 f1cof1 6799 f1coOLD 6801 curry1 8090 curry2 8093 tposfun 8227 fsuppco 9397 fsuppco2 9398 fsuppcor 9399 fin23lem30 10337 smobeth 10581 hashkf 14292 precsexlem10 27662 precsexlem11 27663 xppreima 31871 smatrcl 32776 comptiunov2i 42457 hoicvr 45264 |
Copyright terms: Public domain | W3C validator |