MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funco Structured version   Visualization version   GIF version

Theorem funco 6576
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmo 6551 . . . . 5 (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧)
2 funmo 6551 . . . . . 6 (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦)
32alrimiv 1927 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦)
4 moexexvw 2627 . . . . 5 ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
51, 3, 4syl2anr 597 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
65alrimiv 1927 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
7 funopab 6571 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
86, 7sylibr 234 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
9 df-co 5663 . . 3 (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)}
109funeqi 6557 . 2 (Fun (𝐹𝐺) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
118, 10sylibr 234 1 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wex 1779  ∃*wmo 2537   class class class wbr 5119  {copab 5181  ccom 5658  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-fun 6533
This theorem is referenced by:  funresfunco  6577  fncofn  6655  f1cof1  6784  curry1  8103  curry2  8106  tposfun  8241  fsuppco  9414  fsuppco2  9415  fsuppcor  9416  fin23lem30  10356  smobeth  10600  hashkf  14350  precsexlem10  28170  precsexlem11  28171  xppreima  32623  smatrcl  33827  comptiunov2i  43730  hoicvr  46577  upgrimpthslem1  47920  upgrimspths  47923
  Copyright terms: Public domain W3C validator