| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funco | Structured version Visualization version GIF version | ||
| Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funco | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmo 6497 | . . . . 5 ⊢ (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧) | |
| 2 | funmo 6497 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦) | |
| 3 | 2 | alrimiv 1928 | . . . . 5 ⊢ (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦) |
| 4 | moexexvw 2623 | . . . . 5 ⊢ ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
| 5 | 1, 3, 4 | syl2anr 597 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
| 6 | 5 | alrimiv 1928 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
| 7 | funopab 6516 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
| 8 | 6, 7 | sylibr 234 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
| 9 | df-co 5625 | . . 3 ⊢ (𝐹 ∘ 𝐺) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} | |
| 10 | 9 | funeqi 6502 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
| 11 | 8, 10 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∃*wmo 2533 class class class wbr 5091 {copab 5153 ∘ ccom 5620 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-fun 6483 |
| This theorem is referenced by: funresfunco 6522 fncofn 6598 f1cof1 6729 curry1 8034 curry2 8037 tposfun 8172 fsuppco 9286 fsuppco2 9287 fsuppcor 9288 fin23lem30 10230 smobeth 10474 hashkf 14236 precsexlem10 28152 precsexlem11 28153 xppreima 32622 smatrcl 33804 comptiunov2i 43738 hoicvr 46585 upgrimpthslem1 47937 upgrimspths 47940 |
| Copyright terms: Public domain | W3C validator |