| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funco | Structured version Visualization version GIF version | ||
| Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funco | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmo 6531 | . . . . 5 ⊢ (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧) | |
| 2 | funmo 6531 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦) | |
| 3 | 2 | alrimiv 1927 | . . . . 5 ⊢ (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦) |
| 4 | moexexvw 2621 | . . . . 5 ⊢ ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
| 5 | 1, 3, 4 | syl2anr 597 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
| 6 | 5 | alrimiv 1927 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
| 7 | funopab 6551 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
| 8 | 6, 7 | sylibr 234 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
| 9 | df-co 5647 | . . 3 ⊢ (𝐹 ∘ 𝐺) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} | |
| 10 | 9 | funeqi 6537 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
| 11 | 8, 10 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃*wmo 2531 class class class wbr 5107 {copab 5169 ∘ ccom 5642 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funresfunco 6557 fncofn 6635 f1cof1 6766 curry1 8083 curry2 8086 tposfun 8221 fsuppco 9353 fsuppco2 9354 fsuppcor 9355 fin23lem30 10295 smobeth 10539 hashkf 14297 precsexlem10 28118 precsexlem11 28119 xppreima 32569 smatrcl 33786 comptiunov2i 43695 hoicvr 46546 upgrimpthslem1 47907 upgrimspths 47910 |
| Copyright terms: Public domain | W3C validator |