| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funco | Structured version Visualization version GIF version | ||
| Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funco | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmo 6581 | . . . . 5 ⊢ (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧) | |
| 2 | funmo 6581 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦) | |
| 3 | 2 | alrimiv 1927 | . . . . 5 ⊢ (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦) |
| 4 | moexexvw 2628 | . . . . 5 ⊢ ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
| 5 | 1, 3, 4 | syl2anr 597 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
| 6 | 5 | alrimiv 1927 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
| 7 | funopab 6601 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) | |
| 8 | 6, 7 | sylibr 234 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
| 9 | df-co 5694 | . . 3 ⊢ (𝐹 ∘ 𝐺) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} | |
| 10 | 9 | funeqi 6587 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
| 11 | 8, 10 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃*wmo 2538 class class class wbr 5143 {copab 5205 ∘ ccom 5689 Fun wfun 6555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-fun 6563 |
| This theorem is referenced by: funresfunco 6607 fncofn 6685 f1cof1 6814 curry1 8129 curry2 8132 tposfun 8267 fsuppco 9442 fsuppco2 9443 fsuppcor 9444 fin23lem30 10382 smobeth 10626 hashkf 14371 precsexlem10 28240 precsexlem11 28241 xppreima 32655 smatrcl 33795 comptiunov2i 43719 hoicvr 46563 |
| Copyright terms: Public domain | W3C validator |