MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funco Structured version   Visualization version   GIF version

Theorem funco 6526
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmo 6502 . . . . 5 (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧)
2 funmo 6502 . . . . . 6 (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦)
32alrimiv 1928 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦)
4 moexexvw 2625 . . . . 5 ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
51, 3, 4syl2anr 597 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
65alrimiv 1928 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
7 funopab 6521 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
86, 7sylibr 234 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
9 df-co 5628 . . 3 (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)}
109funeqi 6507 . 2 (Fun (𝐹𝐺) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
118, 10sylibr 234 1 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1780  ∃*wmo 2535   class class class wbr 5093  {copab 5155  ccom 5623  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-fun 6488
This theorem is referenced by:  funresfunco  6527  fncofn  6603  f1cof1  6734  curry1  8040  curry2  8043  tposfun  8178  fsuppco  9293  fsuppco2  9294  fsuppcor  9295  fin23lem30  10240  smobeth  10484  hashkf  14241  precsexlem10  28155  precsexlem11  28156  xppreima  32629  smatrcl  33830  comptiunov2i  43823  hoicvr  46670  upgrimpthslem1  48031  upgrimspths  48034
  Copyright terms: Public domain W3C validator