MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funco Structured version   Visualization version   GIF version

Theorem funco 6542
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmo 6517 . . . . 5 (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧)
2 funmo 6517 . . . . . 6 (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦)
32alrimiv 1931 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦)
4 moexexvw 2625 . . . . 5 ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
51, 3, 4syl2anr 598 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
65alrimiv 1931 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
7 funopab 6537 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
86, 7sylibr 233 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
9 df-co 5643 . . 3 (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)}
109funeqi 6523 . 2 (Fun (𝐹𝐺) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
118, 10sylibr 233 1 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1540  wex 1782  ∃*wmo 2533   class class class wbr 5106  {copab 5168  ccom 5638  Fun wfun 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-fun 6499
This theorem is referenced by:  funresfunco  6543  fncofn  6618  fncoOLD  6620  fco3OLD  6703  f1cof1  6750  f1coOLD  6752  curry1  8037  curry2  8040  tposfun  8174  fsuppco  9343  fsuppco2  9344  fsuppcor  9345  fin23lem30  10283  smobeth  10527  hashkf  14238  xppreima  31608  smatrcl  32434  comptiunov2i  42066  hoicvr  44875
  Copyright terms: Public domain W3C validator