Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  moi Structured version   Visualization version   GIF version

Theorem moi 3633
 Description: Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
moi (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem moi
StepHypRef Expression
1 moi.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2 moi.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2mob 3632 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
43biimprd 251 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝜒𝐴 = 𝐵))
543expia 1119 . . 3 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → (𝜓 → (𝜒𝐴 = 𝐵)))
65impd 415 . 2 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → ((𝜓𝜒) → 𝐴 = 𝐵))
763impia 1115 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∃*wmo 2556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-clab 2737  df-cleq 2751  df-clel 2831  df-v 3412 This theorem is referenced by:  enqeq  10395  f1otrspeq  18643  hausflim  22682  tglineineq  26537  tglineinteq  26539
 Copyright terms: Public domain W3C validator