Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moi | Structured version Visualization version GIF version |
Description: Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.) |
Ref | Expression |
---|---|
moi.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
moi.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
moi | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moi.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | moi.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | mob 3632 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) |
4 | 3 | biimprd 251 | . . . 4 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝜒 → 𝐴 = 𝐵)) |
5 | 4 | 3expia 1119 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑) → (𝜓 → (𝜒 → 𝐴 = 𝐵))) |
6 | 5 | impd 415 | . 2 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑) → ((𝜓 ∧ 𝜒) → 𝐴 = 𝐵)) |
7 | 6 | 3impia 1115 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∃*wmo 2556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 |
This theorem is referenced by: enqeq 10395 f1otrspeq 18643 hausflim 22682 tglineineq 26537 tglineinteq 26539 |
Copyright terms: Public domain | W3C validator |