MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moi Structured version   Visualization version   GIF version

Theorem moi 3706
Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
moi (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem moi
StepHypRef Expression
1 moi.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2 moi.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2mob 3705 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
43biimprd 248 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝜒𝐴 = 𝐵))
543expia 1121 . . 3 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → (𝜓 → (𝜒𝐴 = 𝐵)))
65impd 410 . 2 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → ((𝜓𝜒) → 𝐴 = 𝐵))
763impia 1117 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466
This theorem is referenced by:  enqeq  10953  f1otrspeq  19433  hausflim  23924  tglineineq  28627  tglineinteq  28629
  Copyright terms: Public domain W3C validator