MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflim Structured version   Visualization version   GIF version

Theorem hausflim 23132
Description: A condition for a topology to be Hausdorff in terms of filters. A topology is Hausdorff iff every filter has at most one limit point. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcf.1 𝑋 = 𝐽
Assertion
Ref Expression
hausflim (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝐽   𝑓,𝑋,𝑥

Proof of Theorem hausflim
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 22482 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Top)
2 hausflimi 23131 . . . 4 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
32ralrimivw 3104 . . 3 (𝐽 ∈ Haus → ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
41, 3jca 512 . 2 (𝐽 ∈ Haus → (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
5 simpl 483 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝐽 ∈ Top)
6 flimcf.1 . . . . . . . . . . . . . . 15 𝑋 = 𝐽
76toptopon 22066 . . . . . . . . . . . . . 14 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
85, 7sylib 217 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝐽 ∈ (TopOn‘𝑋))
9 simprll 776 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑧𝑋)
109snssd 4742 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑧} ⊆ 𝑋)
119snn0d 4711 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑧} ≠ ∅)
12 neifil 23031 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑧} ⊆ 𝑋 ∧ {𝑧} ≠ ∅) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋))
138, 10, 11, 12syl3anc 1370 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋))
14 filfbas 22999 . . . . . . . . . . . 12 (((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋))
1513, 14syl 17 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋))
16 simprlr 777 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑤𝑋)
1716snssd 4742 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑤} ⊆ 𝑋)
1816snn0d 4711 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑤} ≠ ∅)
19 neifil 23031 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑤} ⊆ 𝑋 ∧ {𝑤} ≠ ∅) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋))
208, 17, 18, 19syl3anc 1370 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋))
21 filfbas 22999 . . . . . . . . . . . 12 (((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋))
2220, 21syl 17 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋))
23 fbunfip 23020 . . . . . . . . . . 11 ((((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅))
2415, 22, 23syl2anc 584 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅))
256neisspw 22258 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝑧}) ⊆ 𝒫 𝑋)
266neisspw 22258 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝑤}) ⊆ 𝒫 𝑋)
2725, 26unssd 4120 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)
2827adantr 481 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)
2928a1d 25 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋))
30 ssun1 4106 . . . . . . . . . . . . . 14 ((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))
31 filn0 23013 . . . . . . . . . . . . . . 15 (((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ≠ ∅)
3213, 31syl 17 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ≠ ∅)
33 ssn0 4334 . . . . . . . . . . . . . 14 ((((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∧ ((nei‘𝐽)‘{𝑧}) ≠ ∅) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)
3430, 32, 33sylancr 587 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)
3534a1d 25 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅))
36 idd 24 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
3729, 35, 363jcad 1128 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
386topopn 22055 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → 𝑋𝐽)
3938adantr 481 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑋𝐽)
40 fsubbas 23018 . . . . . . . . . . . . 13 (𝑋𝐽 → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
4139, 40syl 17 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
42 fgcl 23029 . . . . . . . . . . . . . . 15 ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋))
4342adantl 482 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋))
44 simplrr 775 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧𝑤)
459adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧𝑋)
4616adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤𝑋)
47 fvex 6787 . . . . . . . . . . . . . . . . . . . . . 22 ((nei‘𝐽)‘{𝑧}) ∈ V
48 fvex 6787 . . . . . . . . . . . . . . . . . . . . . 22 ((nei‘𝐽)‘{𝑤}) ∈ V
4947, 48unex 7596 . . . . . . . . . . . . . . . . . . . . 21 (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V
50 ssfii 9178 . . . . . . . . . . . . . . . . . . . . 21 ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))
52 ssfg 23023 . . . . . . . . . . . . . . . . . . . . 21 ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5352adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5451, 53sstrid 3932 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5530, 54sstrid 3932 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
568adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
57 elflim 23122 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
5856, 43, 57syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
5945, 55, 58mpbir2and 710 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
6054unssbd 4122 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
61 elflim 23122 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6256, 43, 61syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6346, 60, 62mpbir2and 710 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
64 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
65 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6664, 65moi 3653 . . . . . . . . . . . . . . . . . . 19 (((𝑧𝑋𝑤𝑋) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → 𝑧 = 𝑤)
67663com23 1125 . . . . . . . . . . . . . . . . . 18 (((𝑧𝑋𝑤𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → 𝑧 = 𝑤)
68673expia 1120 . . . . . . . . . . . . . . . . 17 (((𝑧𝑋𝑤𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤))
6945, 46, 59, 63, 68syl22anc 836 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤))
7069necon3ad 2956 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧𝑤 → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7144, 70mpd 15 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
72 oveq2 7283 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
7372eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7473mobidv 2549 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7574notbid 318 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7675rspcev 3561 . . . . . . . . . . . . . 14 (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋) ∧ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
7743, 71, 76syl2anc 584 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
7877ex 413 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
7941, 78sylbird 259 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
8037, 79syld 47 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
8124, 80sylbird 259 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
82 df-ne 2944 . . . . . . . . . . . . 13 ((𝑢𝑣) ≠ ∅ ↔ ¬ (𝑢𝑣) = ∅)
8382ralbii 3092 . . . . . . . . . . . 12 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢𝑣) = ∅)
84 ralnex 3167 . . . . . . . . . . . 12 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢𝑣) = ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8583, 84bitri 274 . . . . . . . . . . 11 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8685ralbii 3092 . . . . . . . . . 10 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
87 ralnex 3167 . . . . . . . . . 10 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8886, 87bitri 274 . . . . . . . . 9 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
89 rexnal 3169 . . . . . . . . 9 (∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
9081, 88, 893imtr3g 295 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅ → ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
9190con4d 115 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
9291imp 407 . . . . . 6 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
9392an32s 649 . . . . 5 (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
9493expr 457 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
9594ralrimivva 3123 . . 3 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
96 simpl 483 . . . . 5 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Top)
9796, 7sylib 217 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
98 hausnei2 22504 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)))
9997, 98syl 17 . . 3 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐽 ∈ Haus ↔ ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)))
10095, 99mpbird 256 . 2 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Haus)
1014, 100impbii 208 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ∃*wmo 2538  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839  cfv 6433  (class class class)co 7275  ficfi 9169  fBascfbas 20585  filGencfg 20586  Topctop 22042  TopOnctopon 22059  neicnei 22248  Hauscha 22459  Filcfil 22996   fLim cflim 23085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737  df-fi 9170  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-nei 22249  df-haus 22466  df-fil 22997  df-flim 23090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator