MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflim Structured version   Visualization version   GIF version

Theorem hausflim 23924
Description: A condition for a topology to be Hausdorff in terms of filters. A topology is Hausdorff iff every filter has at most one limit point. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcf.1 𝑋 = 𝐽
Assertion
Ref Expression
hausflim (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝐽   𝑓,𝑋,𝑥

Proof of Theorem hausflim
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23274 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Top)
2 hausflimi 23923 . . . 4 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
32ralrimivw 3137 . . 3 (𝐽 ∈ Haus → ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
41, 3jca 511 . 2 (𝐽 ∈ Haus → (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
5 simpl 482 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝐽 ∈ Top)
6 flimcf.1 . . . . . . . . . . . . . . 15 𝑋 = 𝐽
76toptopon 22860 . . . . . . . . . . . . . 14 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
85, 7sylib 218 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝐽 ∈ (TopOn‘𝑋))
9 simprll 778 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑧𝑋)
109snssd 4790 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑧} ⊆ 𝑋)
119snn0d 4756 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑧} ≠ ∅)
12 neifil 23823 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑧} ⊆ 𝑋 ∧ {𝑧} ≠ ∅) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋))
138, 10, 11, 12syl3anc 1373 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋))
14 filfbas 23791 . . . . . . . . . . . 12 (((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋))
1513, 14syl 17 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋))
16 simprlr 779 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑤𝑋)
1716snssd 4790 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑤} ⊆ 𝑋)
1816snn0d 4756 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑤} ≠ ∅)
19 neifil 23823 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑤} ⊆ 𝑋 ∧ {𝑤} ≠ ∅) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋))
208, 17, 18, 19syl3anc 1373 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋))
21 filfbas 23791 . . . . . . . . . . . 12 (((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋))
2220, 21syl 17 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋))
23 fbunfip 23812 . . . . . . . . . . 11 ((((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅))
2415, 22, 23syl2anc 584 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅))
256neisspw 23050 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝑧}) ⊆ 𝒫 𝑋)
266neisspw 23050 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝑤}) ⊆ 𝒫 𝑋)
2725, 26unssd 4172 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)
2827adantr 480 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)
2928a1d 25 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋))
30 ssun1 4158 . . . . . . . . . . . . . 14 ((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))
31 filn0 23805 . . . . . . . . . . . . . . 15 (((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ≠ ∅)
3213, 31syl 17 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ≠ ∅)
33 ssn0 4384 . . . . . . . . . . . . . 14 ((((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∧ ((nei‘𝐽)‘{𝑧}) ≠ ∅) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)
3430, 32, 33sylancr 587 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)
3534a1d 25 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅))
36 idd 24 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
3729, 35, 363jcad 1129 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
386topopn 22849 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → 𝑋𝐽)
3938adantr 480 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑋𝐽)
40 fsubbas 23810 . . . . . . . . . . . . 13 (𝑋𝐽 → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
4139, 40syl 17 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
42 fgcl 23821 . . . . . . . . . . . . . . 15 ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋))
4342adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋))
44 simplrr 777 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧𝑤)
459adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧𝑋)
4616adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤𝑋)
47 fvex 6894 . . . . . . . . . . . . . . . . . . . . . 22 ((nei‘𝐽)‘{𝑧}) ∈ V
48 fvex 6894 . . . . . . . . . . . . . . . . . . . . . 22 ((nei‘𝐽)‘{𝑤}) ∈ V
4947, 48unex 7743 . . . . . . . . . . . . . . . . . . . . 21 (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V
50 ssfii 9436 . . . . . . . . . . . . . . . . . . . . 21 ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))
52 ssfg 23815 . . . . . . . . . . . . . . . . . . . . 21 ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5352adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5451, 53sstrid 3975 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5530, 54sstrid 3975 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
568adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
57 elflim 23914 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
5856, 43, 57syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
5945, 55, 58mpbir2and 713 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
6054unssbd 4174 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
61 elflim 23914 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6256, 43, 61syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6346, 60, 62mpbir2and 713 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
64 eleq1w 2818 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
65 eleq1w 2818 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6664, 65moi 3706 . . . . . . . . . . . . . . . . . . 19 (((𝑧𝑋𝑤𝑋) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → 𝑧 = 𝑤)
67663com23 1126 . . . . . . . . . . . . . . . . . 18 (((𝑧𝑋𝑤𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → 𝑧 = 𝑤)
68673expia 1121 . . . . . . . . . . . . . . . . 17 (((𝑧𝑋𝑤𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤))
6945, 46, 59, 63, 68syl22anc 838 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤))
7069necon3ad 2946 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧𝑤 → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7144, 70mpd 15 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
72 oveq2 7418 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
7372eleq2d 2821 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7473mobidv 2549 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7574notbid 318 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7675rspcev 3606 . . . . . . . . . . . . . 14 (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋) ∧ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
7743, 71, 76syl2anc 584 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
7877ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
7941, 78sylbird 260 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
8037, 79syld 47 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
8124, 80sylbird 260 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
82 df-ne 2934 . . . . . . . . . . . . 13 ((𝑢𝑣) ≠ ∅ ↔ ¬ (𝑢𝑣) = ∅)
8382ralbii 3083 . . . . . . . . . . . 12 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢𝑣) = ∅)
84 ralnex 3063 . . . . . . . . . . . 12 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢𝑣) = ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8583, 84bitri 275 . . . . . . . . . . 11 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8685ralbii 3083 . . . . . . . . . 10 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
87 ralnex 3063 . . . . . . . . . 10 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8886, 87bitri 275 . . . . . . . . 9 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
89 rexnal 3090 . . . . . . . . 9 (∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
9081, 88, 893imtr3g 295 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅ → ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
9190con4d 115 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
9291imp 406 . . . . . 6 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
9392an32s 652 . . . . 5 (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
9493expr 456 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
9594ralrimivva 3188 . . 3 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
96 simpl 482 . . . . 5 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Top)
9796, 7sylib 218 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
98 hausnei2 23296 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)))
9997, 98syl 17 . . 3 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐽 ∈ Haus ↔ ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)))
10095, 99mpbird 257 . 2 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Haus)
1014, 100impbii 209 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃*wmo 2538  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888  cfv 6536  (class class class)co 7410  ficfi 9427  fBascfbas 21308  filGencfg 21309  Topctop 22836  TopOnctopon 22853  neicnei 23040  Hauscha 23251  Filcfil 23788   fLim cflim 23877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1o 8485  df-2o 8486  df-en 8965  df-fin 8968  df-fi 9428  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-nei 23041  df-haus 23258  df-fil 23789  df-flim 23882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator