MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflim Structured version   Visualization version   GIF version

Theorem hausflim 24010
Description: A condition for a topology to be Hausdorff in terms of filters. A topology is Hausdorff iff every filter has at most one limit point. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcf.1 𝑋 = 𝐽
Assertion
Ref Expression
hausflim (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝐽   𝑓,𝑋,𝑥

Proof of Theorem hausflim
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23360 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Top)
2 hausflimi 24009 . . . 4 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
32ralrimivw 3156 . . 3 (𝐽 ∈ Haus → ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
41, 3jca 511 . 2 (𝐽 ∈ Haus → (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
5 simpl 482 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝐽 ∈ Top)
6 flimcf.1 . . . . . . . . . . . . . . 15 𝑋 = 𝐽
76toptopon 22944 . . . . . . . . . . . . . 14 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
85, 7sylib 218 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝐽 ∈ (TopOn‘𝑋))
9 simprll 778 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑧𝑋)
109snssd 4834 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑧} ⊆ 𝑋)
119snn0d 4800 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑧} ≠ ∅)
12 neifil 23909 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑧} ⊆ 𝑋 ∧ {𝑧} ≠ ∅) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋))
138, 10, 11, 12syl3anc 1371 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋))
14 filfbas 23877 . . . . . . . . . . . 12 (((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋))
1513, 14syl 17 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋))
16 simprlr 779 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑤𝑋)
1716snssd 4834 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑤} ⊆ 𝑋)
1816snn0d 4800 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → {𝑤} ≠ ∅)
19 neifil 23909 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑤} ⊆ 𝑋 ∧ {𝑤} ≠ ∅) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋))
208, 17, 18, 19syl3anc 1371 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋))
21 filfbas 23877 . . . . . . . . . . . 12 (((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋))
2220, 21syl 17 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋))
23 fbunfip 23898 . . . . . . . . . . 11 ((((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅))
2415, 22, 23syl2anc 583 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅))
256neisspw 23136 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝑧}) ⊆ 𝒫 𝑋)
266neisspw 23136 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝑤}) ⊆ 𝒫 𝑋)
2725, 26unssd 4215 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)
2827adantr 480 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)
2928a1d 25 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋))
30 ssun1 4201 . . . . . . . . . . . . . 14 ((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))
31 filn0 23891 . . . . . . . . . . . . . . 15 (((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ≠ ∅)
3213, 31syl 17 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((nei‘𝐽)‘{𝑧}) ≠ ∅)
33 ssn0 4427 . . . . . . . . . . . . . 14 ((((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∧ ((nei‘𝐽)‘{𝑧}) ≠ ∅) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)
3430, 32, 33sylancr 586 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)
3534a1d 25 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅))
36 idd 24 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
3729, 35, 363jcad 1129 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
386topopn 22933 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → 𝑋𝐽)
3938adantr 480 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → 𝑋𝐽)
40 fsubbas 23896 . . . . . . . . . . . . 13 (𝑋𝐽 → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
4139, 40syl 17 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
42 fgcl 23907 . . . . . . . . . . . . . . 15 ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋))
4342adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋))
44 simplrr 777 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧𝑤)
459adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧𝑋)
4616adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤𝑋)
47 fvex 6933 . . . . . . . . . . . . . . . . . . . . . 22 ((nei‘𝐽)‘{𝑧}) ∈ V
48 fvex 6933 . . . . . . . . . . . . . . . . . . . . . 22 ((nei‘𝐽)‘{𝑤}) ∈ V
4947, 48unex 7779 . . . . . . . . . . . . . . . . . . . . 21 (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V
50 ssfii 9488 . . . . . . . . . . . . . . . . . . . . 21 ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))
52 ssfg 23901 . . . . . . . . . . . . . . . . . . . . 21 ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5352adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5451, 53sstrid 4020 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
5530, 54sstrid 4020 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
568adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
57 elflim 24000 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
5856, 43, 57syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
5945, 55, 58mpbir2and 712 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
6054unssbd 4217 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))
61 elflim 24000 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6256, 43, 61syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6346, 60, 62mpbir2and 712 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
64 eleq1w 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
65 eleq1w 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
6664, 65moi 3740 . . . . . . . . . . . . . . . . . . 19 (((𝑧𝑋𝑤𝑋) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → 𝑧 = 𝑤)
67663com23 1126 . . . . . . . . . . . . . . . . . 18 (((𝑧𝑋𝑤𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → 𝑧 = 𝑤)
68673expia 1121 . . . . . . . . . . . . . . . . 17 (((𝑧𝑋𝑤𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤))
6945, 46, 59, 63, 68syl22anc 838 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤))
7069necon3ad 2959 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧𝑤 → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7144, 70mpd 15 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
72 oveq2 7456 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))
7372eleq2d 2830 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7473mobidv 2552 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7574notbid 318 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))))
7675rspcev 3635 . . . . . . . . . . . . . 14 (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋) ∧ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
7743, 71, 76syl2anc 583 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
7877ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
7941, 78sylbird 260 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
8037, 79syld 47 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
8124, 80sylbird 260 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
82 df-ne 2947 . . . . . . . . . . . . 13 ((𝑢𝑣) ≠ ∅ ↔ ¬ (𝑢𝑣) = ∅)
8382ralbii 3099 . . . . . . . . . . . 12 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢𝑣) = ∅)
84 ralnex 3078 . . . . . . . . . . . 12 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢𝑣) = ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8583, 84bitri 275 . . . . . . . . . . 11 (∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8685ralbii 3099 . . . . . . . . . 10 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
87 ralnex 3078 . . . . . . . . . 10 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
8886, 87bitri 275 . . . . . . . . 9 (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) ≠ ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
89 rexnal 3106 . . . . . . . . 9 (∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
9081, 88, 893imtr3g 295 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅ → ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
9190con4d 115 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → (∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
9291imp 406 . . . . . 6 (((𝐽 ∈ Top ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
9392an32s 651 . . . . 5 (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑧𝑤)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)
9493expr 456 . . . 4 (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
9594ralrimivva 3208 . . 3 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅))
96 simpl 482 . . . . 5 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Top)
9796, 7sylib 218 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
98 hausnei2 23382 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)))
9997, 98syl 17 . . 3 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐽 ∈ Haus ↔ ∀𝑧𝑋𝑤𝑋 (𝑧𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢𝑣) = ∅)))
10095, 99mpbird 257 . 2 ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Haus)
1014, 100impbii 209 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ∃*wmo 2541  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  cfv 6573  (class class class)co 7448  ficfi 9479  fBascfbas 21375  filGencfg 21376  Topctop 22920  TopOnctopon 22937  neicnei 23126  Hauscha 23337  Filcfil 23874   fLim cflim 23963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-nei 23127  df-haus 23344  df-fil 23875  df-flim 23968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator