Step | Hyp | Ref
| Expression |
1 | | haustop 22390 |
. . 3
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
2 | | hausflimi 23039 |
. . . 4
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) |
3 | 2 | ralrimivw 3108 |
. . 3
⊢ (𝐽 ∈ Haus →
∀𝑓 ∈
(Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) |
4 | 1, 3 | jca 511 |
. 2
⊢ (𝐽 ∈ Haus → (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |
5 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝐽 ∈ Top) |
6 | | flimcf.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = ∪
𝐽 |
7 | 6 | toptopon 21974 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
8 | 5, 7 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝐽 ∈ (TopOn‘𝑋)) |
9 | | simprll 775 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝑧 ∈ 𝑋) |
10 | 9 | snssd 4739 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑧} ⊆ 𝑋) |
11 | 9 | snn0d 4708 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑧} ≠ ∅) |
12 | | neifil 22939 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑧} ⊆ 𝑋 ∧ {𝑧} ≠ ∅) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋)) |
13 | 8, 10, 11, 12 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋)) |
14 | | filfbas 22907 |
. . . . . . . . . . . 12
⊢
(((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋)) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋)) |
16 | | simprlr 776 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝑤 ∈ 𝑋) |
17 | 16 | snssd 4739 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑤} ⊆ 𝑋) |
18 | 16 | snn0d 4708 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑤} ≠ ∅) |
19 | | neifil 22939 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑤} ⊆ 𝑋 ∧ {𝑤} ≠ ∅) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋)) |
20 | 8, 17, 18, 19 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋)) |
21 | | filfbas 22907 |
. . . . . . . . . . . 12
⊢
(((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) |
23 | | fbunfip 22928 |
. . . . . . . . . . 11
⊢
((((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅)) |
24 | 15, 22, 23 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅)) |
25 | 6 | neisspw 22166 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top →
((nei‘𝐽)‘{𝑧}) ⊆ 𝒫 𝑋) |
26 | 6 | neisspw 22166 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top →
((nei‘𝐽)‘{𝑤}) ⊆ 𝒫 𝑋) |
27 | 25, 26 | unssd 4116 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top →
(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋) |
29 | 28 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)) |
30 | | ssun1 4102 |
. . . . . . . . . . . . . 14
⊢
((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) |
31 | | filn0 22921 |
. . . . . . . . . . . . . . 15
⊢
(((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ≠ ∅) |
32 | 13, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑧}) ≠ ∅) |
33 | | ssn0 4331 |
. . . . . . . . . . . . . 14
⊢
((((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∧ ((nei‘𝐽)‘{𝑧}) ≠ ∅) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅) |
34 | 30, 32, 33 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅) |
35 | 34 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)) |
36 | | idd 24 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) |
37 | 29, 35, 36 | 3jcad 1127 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) |
38 | 6 | topopn 21963 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
39 | 38 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝑋 ∈ 𝐽) |
40 | | fsubbas 22926 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐽 → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) |
42 | | fgcl 22937 |
. . . . . . . . . . . . . . 15
⊢
((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) |
44 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ≠ 𝑤) |
45 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ∈ 𝑋) |
46 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤 ∈ 𝑋) |
47 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((nei‘𝐽)‘{𝑧}) ∈ V |
48 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((nei‘𝐽)‘{𝑤}) ∈ V |
49 | 47, 48 | unex 7574 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V |
50 | | ssfii 9108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) |
51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) |
52 | | ssfg 22931 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) |
53 | 52 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) |
54 | 51, 53 | sstrid 3928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) |
55 | 30, 54 | sstrid 3928 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) |
56 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
57 | | elflim 23030 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
58 | 56, 43, 57 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
59 | 45, 55, 58 | mpbir2and 709 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) |
60 | 54 | unssbd 4118 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) |
61 | | elflim 23030 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
62 | 56, 43, 61 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
63 | 46, 60, 62 | mpbir2and 709 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) |
64 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
65 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑤 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
66 | 64, 65 | moi 3648 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → 𝑧 = 𝑤) |
67 | 66 | 3com23 1124 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → 𝑧 = 𝑤) |
68 | 67 | 3expia 1119 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤)) |
69 | 45, 46, 59, 63, 68 | syl22anc 835 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤)) |
70 | 69 | necon3ad 2955 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧 ≠ 𝑤 → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
71 | 44, 70 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) |
72 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) |
73 | 72 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
74 | 73 | mobidv 2549 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
75 | 74 | notbid 317 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) |
76 | 75 | rspcev 3552 |
. . . . . . . . . . . . . 14
⊢ (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋) ∧ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) |
77 | 43, 71, 76 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) |
78 | 77 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |
79 | 41, 78 | sylbird 259 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |
80 | 37, 79 | syld 47 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |
81 | 24, 80 | sylbird 259 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |
82 | | df-ne 2943 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝑣) ≠ ∅ ↔ ¬ (𝑢 ∩ 𝑣) = ∅) |
83 | 82 | ralbii 3090 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢 ∩ 𝑣) = ∅) |
84 | | ralnex 3163 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
((nei‘𝐽)‘{𝑤}) ¬ (𝑢 ∩ 𝑣) = ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) |
85 | 83, 84 | bitri 274 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) |
86 | 85 | ralbii 3090 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) |
87 | | ralnex 3163 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) |
88 | 86, 87 | bitri 274 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) |
89 | | rexnal 3165 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
(Fil‘𝑋) ¬
∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) |
90 | 81, 88, 89 | 3imtr3g 294 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅ → ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |
91 | 90 | con4d 115 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅)) |
92 | 91 | imp 406 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) |
93 | 92 | an32s 648 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) |
94 | 93 | expr 456 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅)) |
95 | 94 | ralrimivva 3114 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅)) |
96 | | simpl 482 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Top) |
97 | 96, 7 | sylib 217 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ (TopOn‘𝑋)) |
98 | | hausnei2 22412 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅))) |
99 | 97, 98 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐽 ∈ Haus ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅))) |
100 | 95, 99 | mpbird 256 |
. 2
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Haus) |
101 | 4, 100 | impbii 208 |
1
⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |