| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | haustop 23340 | . . 3
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | 
| 2 |  | hausflimi 23989 | . . . 4
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) | 
| 3 | 2 | ralrimivw 3149 | . . 3
⊢ (𝐽 ∈ Haus →
∀𝑓 ∈
(Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) | 
| 4 | 1, 3 | jca 511 | . 2
⊢ (𝐽 ∈ Haus → (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) | 
| 5 |  | simpl 482 | . . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝐽 ∈ Top) | 
| 6 |  | flimcf.1 | . . . . . . . . . . . . . . 15
⊢ 𝑋 = ∪
𝐽 | 
| 7 | 6 | toptopon 22924 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 8 | 5, 7 | sylib 218 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 9 |  | simprll 778 | . . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝑧 ∈ 𝑋) | 
| 10 | 9 | snssd 4808 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑧} ⊆ 𝑋) | 
| 11 | 9 | snn0d 4774 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑧} ≠ ∅) | 
| 12 |  | neifil 23889 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑧} ⊆ 𝑋 ∧ {𝑧} ≠ ∅) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋)) | 
| 13 | 8, 10, 11, 12 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋)) | 
| 14 |  | filfbas 23857 | . . . . . . . . . . . 12
⊢
(((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋)) | 
| 15 | 13, 14 | syl 17 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋)) | 
| 16 |  | simprlr 779 | . . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝑤 ∈ 𝑋) | 
| 17 | 16 | snssd 4808 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑤} ⊆ 𝑋) | 
| 18 | 16 | snn0d 4774 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → {𝑤} ≠ ∅) | 
| 19 |  | neifil 23889 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑤} ⊆ 𝑋 ∧ {𝑤} ≠ ∅) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋)) | 
| 20 | 8, 17, 18, 19 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋)) | 
| 21 |  | filfbas 23857 | . . . . . . . . . . . 12
⊢
(((nei‘𝐽)‘{𝑤}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) | 
| 22 | 20, 21 | syl 17 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) | 
| 23 |  | fbunfip 23878 | . . . . . . . . . . 11
⊢
((((nei‘𝐽)‘{𝑧}) ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝑤}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅)) | 
| 24 | 15, 22, 23 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅)) | 
| 25 | 6 | neisspw 23116 | . . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top →
((nei‘𝐽)‘{𝑧}) ⊆ 𝒫 𝑋) | 
| 26 | 6 | neisspw 23116 | . . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top →
((nei‘𝐽)‘{𝑤}) ⊆ 𝒫 𝑋) | 
| 27 | 25, 26 | unssd 4191 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top →
(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋) | 
| 29 | 28 | a1d 25 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋)) | 
| 30 |  | ssun1 4177 | . . . . . . . . . . . . . 14
⊢
((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) | 
| 31 |  | filn0 23871 | . . . . . . . . . . . . . . 15
⊢
(((nei‘𝐽)‘{𝑧}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑧}) ≠ ∅) | 
| 32 | 13, 31 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((nei‘𝐽)‘{𝑧}) ≠ ∅) | 
| 33 |  | ssn0 4403 | . . . . . . . . . . . . . 14
⊢
((((nei‘𝐽)‘{𝑧}) ⊆ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∧ ((nei‘𝐽)‘{𝑧}) ≠ ∅) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅) | 
| 34 | 30, 32, 33 | sylancr 587 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅) | 
| 35 | 34 | a1d 25 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅)) | 
| 36 |  | idd 24 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) | 
| 37 | 29, 35, 36 | 3jcad 1129 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) | 
| 38 | 6 | topopn 22913 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | 
| 39 | 38 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → 𝑋 ∈ 𝐽) | 
| 40 |  | fsubbas 23876 | . . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐽 → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) | 
| 41 | 39, 40 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) | 
| 42 |  | fgcl 23887 | . . . . . . . . . . . . . . 15
⊢
((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) | 
| 43 | 42 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) | 
| 44 |  | simplrr 777 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ≠ 𝑤) | 
| 45 | 9 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ∈ 𝑋) | 
| 46 | 16 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤 ∈ 𝑋) | 
| 47 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((nei‘𝐽)‘{𝑧}) ∈ V | 
| 48 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((nei‘𝐽)‘{𝑤}) ∈ V | 
| 49 | 47, 48 | unex 7765 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V | 
| 50 |  | ssfii 9460 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ∈ V → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) | 
| 51 | 49, 50 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) | 
| 52 |  | ssfg 23881 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) | 
| 53 | 52 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) | 
| 54 | 51, 53 | sstrid 3994 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) | 
| 55 | 30, 54 | sstrid 3994 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) | 
| 56 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 57 |  | elflim 23980 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 58 | 56, 43, 57 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑧 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑧}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 59 | 45, 55, 58 | mpbir2and 713 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) | 
| 60 | 54 | unssbd 4193 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) | 
| 61 |  | elflim 23980 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 62 | 56, 43, 61 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ (𝑤 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝑤}) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 63 | 46, 60, 62 | mpbir2and 713 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) | 
| 64 |  | eleq1w 2823 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 65 |  | eleq1w 2823 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑤 → (𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ↔ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 66 | 64, 65 | moi 3723 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → 𝑧 = 𝑤) | 
| 67 | 66 | 3com23 1126 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) ∧ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → 𝑧 = 𝑤) | 
| 68 | 67 | 3expia 1121 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) ∧ 𝑤 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤)) | 
| 69 | 45, 46, 59, 63, 68 | syl22anc 838 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))) → 𝑧 = 𝑤)) | 
| 70 | 69 | necon3ad 2952 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → (𝑧 ≠ 𝑤 → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 71 | 44, 70 | mpd 15 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) | 
| 72 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) | 
| 73 | 72 | eleq2d 2826 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 74 | 73 | mobidv 2548 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 75 | 74 | notbid 318 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → (¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))))))) | 
| 76 | 75 | rspcev 3621 | . . . . . . . . . . . . . 14
⊢ (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) ∈ (Fil‘𝑋) ∧ ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) | 
| 77 | 43, 71, 76 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ (fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋)) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) | 
| 78 | 77 | ex 412 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ((fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) ∈ (fBas‘𝑋) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) | 
| 79 | 41, 78 | sylbird 260 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (((((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤})))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) | 
| 80 | 37, 79 | syld 47 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝑧}) ∪ ((nei‘𝐽)‘{𝑤}))) → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) | 
| 81 | 24, 80 | sylbird 260 | . . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (∀𝑢 ∈ ((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ → ∃𝑓 ∈ (Fil‘𝑋) ¬ ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) | 
| 82 |  | df-ne 2940 | . . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝑣) ≠ ∅ ↔ ¬ (𝑢 ∩ 𝑣) = ∅) | 
| 83 | 82 | ralbii 3092 | . . . . . . . . . . . 12
⊢
(∀𝑣 ∈
((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑤}) ¬ (𝑢 ∩ 𝑣) = ∅) | 
| 84 |  | ralnex 3071 | . . . . . . . . . . . 12
⊢
(∀𝑣 ∈
((nei‘𝐽)‘{𝑤}) ¬ (𝑢 ∩ 𝑣) = ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) | 
| 85 | 83, 84 | bitri 275 | . . . . . . . . . . 11
⊢
(∀𝑣 ∈
((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) | 
| 86 | 85 | ralbii 3092 | . . . . . . . . . 10
⊢
(∀𝑢 ∈
((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ∀𝑢 ∈ ((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) | 
| 87 |  | ralnex 3071 | . . . . . . . . . 10
⊢
(∀𝑢 ∈
((nei‘𝐽)‘{𝑧}) ¬ ∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) | 
| 88 | 86, 87 | bitri 275 | . . . . . . . . 9
⊢
(∀𝑢 ∈
((nei‘𝐽)‘{𝑧})∀𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) ≠ ∅ ↔ ¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) | 
| 89 |  | rexnal 3099 | . . . . . . . . 9
⊢
(∃𝑓 ∈
(Fil‘𝑋) ¬
∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ↔ ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) | 
| 90 | 81, 88, 89 | 3imtr3g 295 | . . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (¬ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅ → ¬ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) | 
| 91 | 90 | con4d 115 | . . . . . . 7
⊢ ((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → (∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅)) | 
| 92 | 91 | imp 406 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) | 
| 93 | 92 | an32s 652 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ 𝑧 ≠ 𝑤)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅) | 
| 94 | 93 | expr 456 | . . . 4
⊢ (((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅)) | 
| 95 | 94 | ralrimivva 3201 | . . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅)) | 
| 96 |  | simpl 482 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Top) | 
| 97 | 96, 7 | sylib 218 | . . . 4
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 98 |  | hausnei2 23362 | . . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅))) | 
| 99 | 97, 98 | syl 17 | . . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐽 ∈ Haus ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧 ≠ 𝑤 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑧})∃𝑣 ∈ ((nei‘𝐽)‘{𝑤})(𝑢 ∩ 𝑣) = ∅))) | 
| 100 | 95, 99 | mpbird 257 | . 2
⊢ ((𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝐽 ∈ Haus) | 
| 101 | 4, 100 | impbii 209 | 1
⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) |