Step | Hyp | Ref
| Expression |
1 | | f1ofn 6608 |
. . 3
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) |
2 | 1 | ad2antrr 725 |
. 2
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 Fn 𝐴) |
3 | | f1ofn 6608 |
. . 3
⊢ (𝐺:𝐴–1-1-onto→𝐴 → 𝐺 Fn 𝐴) |
4 | 3 | ad2antlr 726 |
. 2
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐺 Fn 𝐴) |
5 | | 1onn 8281 |
. . . . . . 7
⊢
1o ∈ ω |
6 | | simplrr 777 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I )) |
7 | | simplrl 776 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈
2o) |
8 | | df-2o 8119 |
. . . . . . . . 9
⊢
2o = suc 1o |
9 | 7, 8 | breqtrdi 5077 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc
1o) |
10 | 6, 9 | eqbrtrd 5058 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc
1o) |
11 | | simpr 488 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I )) |
12 | | dif1en 8746 |
. . . . . . 7
⊢
((1o ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc 1o ∧
𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈
1o) |
13 | 5, 10, 11, 12 | mp3an2i 1463 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o) |
14 | | euen1b 8612 |
. . . . . . 7
⊢ ((dom
(𝐺 ∖ I ) ∖
{𝑥}) ≈ 1o
↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
15 | | eumo 2597 |
. . . . . . 7
⊢
(∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
16 | 14, 15 | sylbi 220 |
. . . . . 6
⊢ ((dom
(𝐺 ∖ I ) ∖
{𝑥}) ≈ 1o
→ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
17 | 13, 16 | syl 17 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
18 | | f1omvdmvd 18651 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})) |
19 | 18 | ex 416 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
20 | 19 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
21 | | eleq2 2840 |
. . . . . . . 8
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
22 | 21 | ad2antll 728 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
23 | | difeq1 4023 |
. . . . . . . . 9
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥})) |
24 | 23 | eleq2d 2837 |
. . . . . . . 8
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
25 | 24 | ad2antll 728 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
26 | 20, 22, 25 | 3imtr4d 297 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
27 | 26 | imp 410 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
28 | | f1omvdmvd 18651 |
. . . . . 6
⊢ ((𝐺:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
29 | 28 | ad4ant24 753 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
30 | | fvex 6676 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
31 | | fvex 6676 |
. . . . . . 7
⊢ (𝐺‘𝑥) ∈ V |
32 | 30, 31 | pm3.2i 474 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ V ∧ (𝐺‘𝑥) ∈ V) |
33 | | eleq1 2839 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
34 | | eleq1 2839 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
35 | 33, 34 | moi 3634 |
. . . . . 6
⊢ ((((𝐹‘𝑥) ∈ V ∧ (𝐺‘𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
36 | 32, 35 | mp3an1 1445 |
. . . . 5
⊢
((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
37 | 17, 27, 29, 36 | syl12anc 835 |
. . . 4
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
38 | 37 | adantlr 714 |
. . 3
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
39 | | simplrr 777 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I )) |
40 | 39 | eleq2d 2837 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
41 | | fnelnfp 6936 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
42 | 2, 41 | sylan 583 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
43 | 40, 42 | bitrd 282 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
44 | 43 | necon2bbid 2994 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I ))) |
45 | 44 | biimpar 481 |
. . . 4
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = 𝑥) |
46 | | fnelnfp 6936 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺‘𝑥) ≠ 𝑥)) |
47 | 4, 46 | sylan 583 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺‘𝑥) ≠ 𝑥)) |
48 | 47 | necon2bbid 2994 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I ))) |
49 | 48 | biimpar 481 |
. . . 4
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) = 𝑥) |
50 | 45, 49 | eqtr4d 2796 |
. . 3
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
51 | 38, 50 | pm2.61dan 812 |
. 2
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
52 | 2, 4, 51 | eqfnfvd 6801 |
1
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺) |