MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrspeq Structured version   Visualization version   GIF version

Theorem f1otrspeq 19361
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1otrspeq (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)

Proof of Theorem f1otrspeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofn 6783 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
21ad2antrr 726 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 Fn 𝐴)
3 f1ofn 6783 . . 3 (𝐺:𝐴1-1-onto𝐴𝐺 Fn 𝐴)
43ad2antlr 727 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐺 Fn 𝐴)
5 1onn 8581 . . . . . . 7 1o ∈ ω
6 simplrr 777 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
7 simplrl 776 . . . . . . . . 9 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ 2o)
8 df-2o 8412 . . . . . . . . 9 2o = suc 1o
97, 8breqtrdi 5143 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1o)
106, 9eqbrtrd 5124 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc 1o)
11 simpr 484 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I ))
12 dif1ennn 9102 . . . . . . 7 ((1o ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc 1o𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
135, 10, 11, 12mp3an2i 1468 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
14 euen1b 8976 . . . . . . 7 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o ↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
15 eumo 2571 . . . . . . 7 (∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1614, 15sylbi 217 . . . . . 6 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1713, 16syl 17 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
18 f1omvdmvd 19357 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
1918ex 412 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2019ad2antrr 726 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 eleq2 2817 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
2221ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
23 difeq1 4078 . . . . . . . . 9 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2423eleq2d 2814 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2524ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2620, 22, 253imtr4d 294 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
2726imp 406 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
28 f1omvdmvd 19357 . . . . . 6 ((𝐺:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
2928ad4ant24 754 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
30 fvex 6853 . . . . . . 7 (𝐹𝑥) ∈ V
31 fvex 6853 . . . . . . 7 (𝐺𝑥) ∈ V
3230, 31pm3.2i 470 . . . . . 6 ((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V)
33 eleq1 2816 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
34 eleq1 2816 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
3533, 34moi 3686 . . . . . 6 ((((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3632, 35mp3an1 1450 . . . . 5 ((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3717, 27, 29, 36syl12anc 836 . . . 4 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
3837adantlr 715 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
39 simplrr 777 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
4039eleq2d 2814 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
41 fnelnfp 7133 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
422, 41sylan 580 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4340, 42bitrd 279 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4443necon2bbid 2968 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4544biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = 𝑥)
46 fnelnfp 7133 . . . . . . 7 ((𝐺 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
474, 46sylan 580 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
4847necon2bbid 2968 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4948biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) = 𝑥)
5045, 49eqtr4d 2767 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
5138, 50pm2.61dan 812 . 2 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
522, 4, 51eqfnfvd 6988 1 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wne 2925  Vcvv 3444  cdif 3908  {csn 4585   class class class wbr 5102   I cid 5525  dom cdm 5631  suc csuc 6322   Fn wfn 6494  1-1-ontowf1o 6498  cfv 6499  ωcom 7822  1oc1o 8404  2oc2o 8405  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-2o 8412  df-en 8896
This theorem is referenced by:  pmtrfb  19379  psgnunilem1  19407
  Copyright terms: Public domain W3C validator