MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrspeq Structured version   Visualization version   GIF version

Theorem f1otrspeq 19480
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1otrspeq (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)

Proof of Theorem f1otrspeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofn 6850 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
21ad2antrr 726 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 Fn 𝐴)
3 f1ofn 6850 . . 3 (𝐺:𝐴1-1-onto𝐴𝐺 Fn 𝐴)
43ad2antlr 727 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐺 Fn 𝐴)
5 1onn 8677 . . . . . . 7 1o ∈ ω
6 simplrr 778 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
7 simplrl 777 . . . . . . . . 9 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ 2o)
8 df-2o 8506 . . . . . . . . 9 2o = suc 1o
97, 8breqtrdi 5189 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1o)
106, 9eqbrtrd 5170 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc 1o)
11 simpr 484 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I ))
12 dif1ennn 9200 . . . . . . 7 ((1o ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc 1o𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
135, 10, 11, 12mp3an2i 1465 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
14 euen1b 9067 . . . . . . 7 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o ↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
15 eumo 2576 . . . . . . 7 (∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1614, 15sylbi 217 . . . . . 6 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1713, 16syl 17 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
18 f1omvdmvd 19476 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
1918ex 412 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2019ad2antrr 726 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 eleq2 2828 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
2221ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
23 difeq1 4129 . . . . . . . . 9 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2423eleq2d 2825 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2524ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2620, 22, 253imtr4d 294 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
2726imp 406 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
28 f1omvdmvd 19476 . . . . . 6 ((𝐺:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
2928ad4ant24 754 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
30 fvex 6920 . . . . . . 7 (𝐹𝑥) ∈ V
31 fvex 6920 . . . . . . 7 (𝐺𝑥) ∈ V
3230, 31pm3.2i 470 . . . . . 6 ((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V)
33 eleq1 2827 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
34 eleq1 2827 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
3533, 34moi 3727 . . . . . 6 ((((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3632, 35mp3an1 1447 . . . . 5 ((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3717, 27, 29, 36syl12anc 837 . . . 4 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
3837adantlr 715 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
39 simplrr 778 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
4039eleq2d 2825 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
41 fnelnfp 7197 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
422, 41sylan 580 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4340, 42bitrd 279 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4443necon2bbid 2982 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4544biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = 𝑥)
46 fnelnfp 7197 . . . . . . 7 ((𝐺 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
474, 46sylan 580 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
4847necon2bbid 2982 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4948biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) = 𝑥)
5045, 49eqtr4d 2778 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
5138, 50pm2.61dan 813 . 2 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
522, 4, 51eqfnfvd 7054 1 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  ∃*wmo 2536  ∃!weu 2566  wne 2938  Vcvv 3478  cdif 3960  {csn 4631   class class class wbr 5148   I cid 5582  dom cdm 5689  suc csuc 6388   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  ωcom 7887  1oc1o 8498  2oc2o 8499  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-en 8985
This theorem is referenced by:  pmtrfb  19498  psgnunilem1  19526
  Copyright terms: Public domain W3C validator