MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrspeq Structured version   Visualization version   GIF version

Theorem f1otrspeq 19465
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1otrspeq (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)

Proof of Theorem f1otrspeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofn 6849 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
21ad2antrr 726 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 Fn 𝐴)
3 f1ofn 6849 . . 3 (𝐺:𝐴1-1-onto𝐴𝐺 Fn 𝐴)
43ad2antlr 727 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐺 Fn 𝐴)
5 1onn 8678 . . . . . . 7 1o ∈ ω
6 simplrr 778 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
7 simplrl 777 . . . . . . . . 9 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ 2o)
8 df-2o 8507 . . . . . . . . 9 2o = suc 1o
97, 8breqtrdi 5184 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1o)
106, 9eqbrtrd 5165 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc 1o)
11 simpr 484 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I ))
12 dif1ennn 9201 . . . . . . 7 ((1o ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc 1o𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
135, 10, 11, 12mp3an2i 1468 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
14 euen1b 9068 . . . . . . 7 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o ↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
15 eumo 2578 . . . . . . 7 (∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1614, 15sylbi 217 . . . . . 6 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1713, 16syl 17 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
18 f1omvdmvd 19461 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
1918ex 412 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2019ad2antrr 726 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 eleq2 2830 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
2221ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
23 difeq1 4119 . . . . . . . . 9 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2423eleq2d 2827 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2524ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2620, 22, 253imtr4d 294 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
2726imp 406 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
28 f1omvdmvd 19461 . . . . . 6 ((𝐺:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
2928ad4ant24 754 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
30 fvex 6919 . . . . . . 7 (𝐹𝑥) ∈ V
31 fvex 6919 . . . . . . 7 (𝐺𝑥) ∈ V
3230, 31pm3.2i 470 . . . . . 6 ((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V)
33 eleq1 2829 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
34 eleq1 2829 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
3533, 34moi 3724 . . . . . 6 ((((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3632, 35mp3an1 1450 . . . . 5 ((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3717, 27, 29, 36syl12anc 837 . . . 4 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
3837adantlr 715 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
39 simplrr 778 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
4039eleq2d 2827 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
41 fnelnfp 7197 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
422, 41sylan 580 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4340, 42bitrd 279 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4443necon2bbid 2984 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4544biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = 𝑥)
46 fnelnfp 7197 . . . . . . 7 ((𝐺 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
474, 46sylan 580 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
4847necon2bbid 2984 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4948biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) = 𝑥)
5045, 49eqtr4d 2780 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
5138, 50pm2.61dan 813 . 2 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
522, 4, 51eqfnfvd 7054 1 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  ∃*wmo 2538  ∃!weu 2568  wne 2940  Vcvv 3480  cdif 3948  {csn 4626   class class class wbr 5143   I cid 5577  dom cdm 5685  suc csuc 6386   Fn wfn 6556  1-1-ontowf1o 6560  cfv 6561  ωcom 7887  1oc1o 8499  2oc2o 8500  cen 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-en 8986
This theorem is referenced by:  pmtrfb  19483  psgnunilem1  19511
  Copyright terms: Public domain W3C validator