MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrspeq Structured version   Visualization version   GIF version

Theorem f1otrspeq 18970
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1otrspeq (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)

Proof of Theorem f1otrspeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofn 6701 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
21ad2antrr 722 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 Fn 𝐴)
3 f1ofn 6701 . . 3 (𝐺:𝐴1-1-onto𝐴𝐺 Fn 𝐴)
43ad2antlr 723 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐺 Fn 𝐴)
5 1onn 8432 . . . . . . 7 1o ∈ ω
6 simplrr 774 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
7 simplrl 773 . . . . . . . . 9 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ 2o)
8 df-2o 8268 . . . . . . . . 9 2o = suc 1o
97, 8breqtrdi 5111 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1o)
106, 9eqbrtrd 5092 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc 1o)
11 simpr 484 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I ))
12 dif1en 8907 . . . . . . 7 ((1o ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc 1o𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
135, 10, 11, 12mp3an2i 1464 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
14 euen1b 8771 . . . . . . 7 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o ↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
15 eumo 2578 . . . . . . 7 (∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1614, 15sylbi 216 . . . . . 6 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1713, 16syl 17 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
18 f1omvdmvd 18966 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
1918ex 412 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2019ad2antrr 722 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 eleq2 2827 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
2221ad2antll 725 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
23 difeq1 4046 . . . . . . . . 9 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2423eleq2d 2824 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2524ad2antll 725 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2620, 22, 253imtr4d 293 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
2726imp 406 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
28 f1omvdmvd 18966 . . . . . 6 ((𝐺:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
2928ad4ant24 750 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
30 fvex 6769 . . . . . . 7 (𝐹𝑥) ∈ V
31 fvex 6769 . . . . . . 7 (𝐺𝑥) ∈ V
3230, 31pm3.2i 470 . . . . . 6 ((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V)
33 eleq1 2826 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
34 eleq1 2826 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
3533, 34moi 3648 . . . . . 6 ((((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3632, 35mp3an1 1446 . . . . 5 ((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3717, 27, 29, 36syl12anc 833 . . . 4 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
3837adantlr 711 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
39 simplrr 774 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
4039eleq2d 2824 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
41 fnelnfp 7031 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
422, 41sylan 579 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4340, 42bitrd 278 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4443necon2bbid 2986 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4544biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = 𝑥)
46 fnelnfp 7031 . . . . . . 7 ((𝐺 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
474, 46sylan 579 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
4847necon2bbid 2986 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4948biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) = 𝑥)
5045, 49eqtr4d 2781 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
5138, 50pm2.61dan 809 . 2 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
522, 4, 51eqfnfvd 6894 1 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  ∃!weu 2568  wne 2942  Vcvv 3422  cdif 3880  {csn 4558   class class class wbr 5070   I cid 5479  dom cdm 5580  suc csuc 6253   Fn wfn 6413  1-1-ontowf1o 6417  cfv 6418  ωcom 7687  1oc1o 8260  2oc2o 8261  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-en 8692
This theorem is referenced by:  pmtrfb  18988  psgnunilem1  19016
  Copyright terms: Public domain W3C validator