| Step | Hyp | Ref
| Expression |
| 1 | | f1ofn 6849 |
. . 3
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) |
| 2 | 1 | ad2antrr 726 |
. 2
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 Fn 𝐴) |
| 3 | | f1ofn 6849 |
. . 3
⊢ (𝐺:𝐴–1-1-onto→𝐴 → 𝐺 Fn 𝐴) |
| 4 | 3 | ad2antlr 727 |
. 2
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐺 Fn 𝐴) |
| 5 | | 1onn 8678 |
. . . . . . 7
⊢
1o ∈ ω |
| 6 | | simplrr 778 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I )) |
| 7 | | simplrl 777 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈
2o) |
| 8 | | df-2o 8507 |
. . . . . . . . 9
⊢
2o = suc 1o |
| 9 | 7, 8 | breqtrdi 5184 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc
1o) |
| 10 | 6, 9 | eqbrtrd 5165 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc
1o) |
| 11 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I )) |
| 12 | | dif1ennn 9201 |
. . . . . . 7
⊢
((1o ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc 1o ∧
𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈
1o) |
| 13 | 5, 10, 11, 12 | mp3an2i 1468 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o) |
| 14 | | euen1b 9068 |
. . . . . . 7
⊢ ((dom
(𝐺 ∖ I ) ∖
{𝑥}) ≈ 1o
↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 15 | | eumo 2578 |
. . . . . . 7
⊢
(∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 16 | 14, 15 | sylbi 217 |
. . . . . 6
⊢ ((dom
(𝐺 ∖ I ) ∖
{𝑥}) ≈ 1o
→ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 17 | 13, 16 | syl 17 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 18 | | f1omvdmvd 19461 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 19 | 18 | ex 412 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 20 | 19 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 21 | | eleq2 2830 |
. . . . . . . 8
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
| 22 | 21 | ad2antll 729 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
| 23 | | difeq1 4119 |
. . . . . . . . 9
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 24 | 23 | eleq2d 2827 |
. . . . . . . 8
⊢ (dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 25 | 24 | ad2antll 729 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))) |
| 26 | 20, 22, 25 | 3imtr4d 294 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
| 27 | 26 | imp 406 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 28 | | f1omvdmvd 19461 |
. . . . . 6
⊢ ((𝐺:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 29 | 28 | ad4ant24 754 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})) |
| 30 | | fvex 6919 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
| 31 | | fvex 6919 |
. . . . . . 7
⊢ (𝐺‘𝑥) ∈ V |
| 32 | 30, 31 | pm3.2i 470 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ V ∧ (𝐺‘𝑥) ∈ V) |
| 33 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
| 34 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) |
| 35 | 33, 34 | moi 3724 |
. . . . . 6
⊢ ((((𝐹‘𝑥) ∈ V ∧ (𝐺‘𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 36 | 32, 35 | mp3an1 1450 |
. . . . 5
⊢
((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺‘𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 37 | 17, 27, 29, 36 | syl12anc 837 |
. . . 4
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 38 | 37 | adantlr 715 |
. . 3
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 39 | | simplrr 778 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I )) |
| 40 | 39 | eleq2d 2827 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I ))) |
| 41 | | fnelnfp 7197 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 42 | 2, 41 | sylan 580 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 43 | 40, 42 | bitrd 279 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 44 | 43 | necon2bbid 2984 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I ))) |
| 45 | 44 | biimpar 477 |
. . . 4
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = 𝑥) |
| 46 | | fnelnfp 7197 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺‘𝑥) ≠ 𝑥)) |
| 47 | 4, 46 | sylan 580 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺‘𝑥) ≠ 𝑥)) |
| 48 | 47 | necon2bbid 2984 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I ))) |
| 49 | 48 | biimpar 477 |
. . . 4
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺‘𝑥) = 𝑥) |
| 50 | 45, 49 | eqtr4d 2780 |
. . 3
⊢
(((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 51 | 38, 50 | pm2.61dan 813 |
. 2
⊢ ((((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 52 | 2, 4, 51 | eqfnfvd 7054 |
1
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom
(𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺) |