MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrspeq Structured version   Visualization version   GIF version

Theorem f1otrspeq 19359
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1otrspeq (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)

Proof of Theorem f1otrspeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofn 6764 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
21ad2antrr 726 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 Fn 𝐴)
3 f1ofn 6764 . . 3 (𝐺:𝐴1-1-onto𝐴𝐺 Fn 𝐴)
43ad2antlr 727 . 2 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐺 Fn 𝐴)
5 1onn 8555 . . . . . . 7 1o ∈ ω
6 simplrr 777 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
7 simplrl 776 . . . . . . . . 9 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ 2o)
8 df-2o 8386 . . . . . . . . 9 2o = suc 1o
97, 8breqtrdi 5130 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1o)
106, 9eqbrtrd 5111 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → dom (𝐺 ∖ I ) ≈ suc 1o)
11 simpr 484 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → 𝑥 ∈ dom (𝐺 ∖ I ))
12 dif1ennn 9072 . . . . . . 7 ((1o ∈ ω ∧ dom (𝐺 ∖ I ) ≈ suc 1o𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
135, 10, 11, 12mp3an2i 1468 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o)
14 euen1b 8950 . . . . . . 7 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o ↔ ∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
15 eumo 2573 . . . . . . 7 (∃!𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1614, 15sylbi 217 . . . . . 6 ((dom (𝐺 ∖ I ) ∖ {𝑥}) ≈ 1o → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
1713, 16syl 17 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
18 f1omvdmvd 19355 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
1918ex 412 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2019ad2antrr 726 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐹 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 eleq2 2820 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
2221ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
23 difeq1 4066 . . . . . . . . 9 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → (dom (𝐺 ∖ I ) ∖ {𝑥}) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2423eleq2d 2817 . . . . . . . 8 (dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2524ad2antll 729 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})))
2620, 22, 253imtr4d 294 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → (𝑥 ∈ dom (𝐺 ∖ I ) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
2726imp 406 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
28 f1omvdmvd 19355 . . . . . 6 ((𝐺:𝐴1-1-onto𝐴𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
2928ad4ant24 754 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))
30 fvex 6835 . . . . . . 7 (𝐹𝑥) ∈ V
31 fvex 6835 . . . . . . 7 (𝐺𝑥) ∈ V
3230, 31pm3.2i 470 . . . . . 6 ((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V)
33 eleq1 2819 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
34 eleq1 2819 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ↔ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥})))
3533, 34moi 3672 . . . . . 6 ((((𝐹𝑥) ∈ V ∧ (𝐺𝑥) ∈ V) ∧ ∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3632, 35mp3an1 1450 . . . . 5 ((∃*𝑦 𝑦 ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ ((𝐹𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}) ∧ (𝐺𝑥) ∈ (dom (𝐺 ∖ I ) ∖ {𝑥}))) → (𝐹𝑥) = (𝐺𝑥))
3717, 27, 29, 36syl12anc 836 . . . 4 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
3837adantlr 715 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
39 simplrr 777 . . . . . . . 8 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))
4039eleq2d 2817 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ 𝑥 ∈ dom (𝐹 ∖ I )))
41 fnelnfp 7111 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
422, 41sylan 580 . . . . . . 7 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4340, 42bitrd 279 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4443necon2bbid 2971 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4544biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = 𝑥)
46 fnelnfp 7111 . . . . . . 7 ((𝐺 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
474, 46sylan 580 . . . . . 6 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐺 ∖ I ) ↔ (𝐺𝑥) ≠ 𝑥))
4847necon2bbid 2971 . . . . 5 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐺 ∖ I )))
4948biimpar 477 . . . 4 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐺𝑥) = 𝑥)
5045, 49eqtr4d 2769 . . 3 (((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ dom (𝐺 ∖ I )) → (𝐹𝑥) = (𝐺𝑥))
5138, 50pm2.61dan 812 . 2 ((((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
522, 4, 51eqfnfvd 6967 1 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ∃*wmo 2533  ∃!weu 2563  wne 2928  Vcvv 3436  cdif 3894  {csn 4573   class class class wbr 5089   I cid 5508  dom cdm 5614  suc csuc 6308   Fn wfn 6476  1-1-ontowf1o 6480  cfv 6481  ωcom 7796  1oc1o 8378  2oc2o 8379  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870
This theorem is referenced by:  pmtrfb  19377  psgnunilem1  19405
  Copyright terms: Public domain W3C validator