|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > enqeq | Structured version Visualization version GIF version | ||
| Description: Corollary of nqereu 10969: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| enqeq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simpa 1149 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) | |
| 2 | elpqn 10965 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 3 | 2 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ (N × N)) | 
| 4 | nqereu 10969 | . . . 4 ⊢ (𝐵 ∈ (N × N) → ∃!𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
| 5 | reurmo 3383 | . . . 4 ⊢ (∃!𝑥 ∈ Q 𝑥 ~Q 𝐵 → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) | 
| 7 | df-rmo 3380 | . . 3 ⊢ (∃*𝑥 ∈ Q 𝑥 ~Q 𝐵 ↔ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) | 
| 9 | 3simpb 1150 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵)) | |
| 10 | simp2 1138 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ Q) | |
| 11 | enqer 10961 | . . . . 5 ⊢ ~Q Er (N × N) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) | 
| 13 | 12, 3 | erref 8765 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q 𝐵) | 
| 14 | 10, 13 | jca 511 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵)) | 
| 15 | eleq1 2829 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Q ↔ 𝐴 ∈ Q)) | |
| 16 | breq1 5146 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ~Q 𝐵 ↔ 𝐴 ~Q 𝐵)) | |
| 17 | 15, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵))) | 
| 18 | eleq1 2829 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ Q ↔ 𝐵 ∈ Q)) | |
| 19 | breq1 5146 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ~Q 𝐵 ↔ 𝐵 ~Q 𝐵)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) | 
| 21 | 17, 20 | moi 3724 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ∧ ((𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵) ∧ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) → 𝐴 = 𝐵) | 
| 22 | 1, 8, 9, 14, 21 | syl112anc 1376 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃*wmo 2538 ∃!wreu 3378 ∃*wrmo 3379 class class class wbr 5143 × cxp 5683 Er wer 8742 Ncnpi 10884 ~Q ceq 10891 Qcnq 10892 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-oadd 8510 df-omul 8511 df-er 8745 df-ni 10912 df-mi 10914 df-lti 10915 df-enq 10951 df-nq 10952 | 
| This theorem is referenced by: nqereq 10975 ltsonq 11009 | 
| Copyright terms: Public domain | W3C validator |