| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enqeq | Structured version Visualization version GIF version | ||
| Description: Corollary of nqereu 10948: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enqeq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) | |
| 2 | elpqn 10944 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 3 | 2 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ (N × N)) |
| 4 | nqereu 10948 | . . . 4 ⊢ (𝐵 ∈ (N × N) → ∃!𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
| 5 | reurmo 3367 | . . . 4 ⊢ (∃!𝑥 ∈ Q 𝑥 ~Q 𝐵 → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) |
| 7 | df-rmo 3364 | . . 3 ⊢ (∃*𝑥 ∈ Q 𝑥 ~Q 𝐵 ↔ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) |
| 9 | 3simpb 1149 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵)) | |
| 10 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ Q) | |
| 11 | enqer 10940 | . . . . 5 ⊢ ~Q Er (N × N) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) |
| 13 | 12, 3 | erref 8744 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q 𝐵) |
| 14 | 10, 13 | jca 511 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵)) |
| 15 | eleq1 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Q ↔ 𝐴 ∈ Q)) | |
| 16 | breq1 5127 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ~Q 𝐵 ↔ 𝐴 ~Q 𝐵)) | |
| 17 | 15, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵))) |
| 18 | eleq1 2823 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ Q ↔ 𝐵 ∈ Q)) | |
| 19 | breq1 5127 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ~Q 𝐵 ↔ 𝐵 ~Q 𝐵)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) |
| 21 | 17, 20 | moi 3706 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ∧ ((𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵) ∧ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) → 𝐴 = 𝐵) |
| 22 | 1, 8, 9, 14, 21 | syl112anc 1376 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃*wmo 2538 ∃!wreu 3362 ∃*wrmo 3363 class class class wbr 5124 × cxp 5657 Er wer 8721 Ncnpi 10863 ~Q ceq 10870 Qcnq 10871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-oadd 8489 df-omul 8490 df-er 8724 df-ni 10891 df-mi 10893 df-lti 10894 df-enq 10930 df-nq 10931 |
| This theorem is referenced by: nqereq 10954 ltsonq 10988 |
| Copyright terms: Public domain | W3C validator |