MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqeq Structured version   Visualization version   GIF version

Theorem enqeq 10825
Description: Corollary of nqereu 10820: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
enqeq ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐴 = 𝐵)

Proof of Theorem enqeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3simpa 1148 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐴Q𝐵Q))
2 elpqn 10816 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
323ad2ant2 1134 . . . 4 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵 ∈ (N × N))
4 nqereu 10820 . . . 4 (𝐵 ∈ (N × N) → ∃!𝑥Q 𝑥 ~Q 𝐵)
5 reurmo 3349 . . . 4 (∃!𝑥Q 𝑥 ~Q 𝐵 → ∃*𝑥Q 𝑥 ~Q 𝐵)
63, 4, 53syl 18 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ∃*𝑥Q 𝑥 ~Q 𝐵)
7 df-rmo 3346 . . 3 (∃*𝑥Q 𝑥 ~Q 𝐵 ↔ ∃*𝑥(𝑥Q𝑥 ~Q 𝐵))
86, 7sylib 218 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ∃*𝑥(𝑥Q𝑥 ~Q 𝐵))
9 3simpb 1149 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐴Q𝐴 ~Q 𝐵))
10 simp2 1137 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵Q)
11 enqer 10812 . . . . 5 ~Q Er (N × N)
1211a1i 11 . . . 4 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ~Q Er (N × N))
1312, 3erref 8642 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵 ~Q 𝐵)
1410, 13jca 511 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐵Q𝐵 ~Q 𝐵))
15 eleq1 2819 . . . 4 (𝑥 = 𝐴 → (𝑥Q𝐴Q))
16 breq1 5092 . . . 4 (𝑥 = 𝐴 → (𝑥 ~Q 𝐵𝐴 ~Q 𝐵))
1715, 16anbi12d 632 . . 3 (𝑥 = 𝐴 → ((𝑥Q𝑥 ~Q 𝐵) ↔ (𝐴Q𝐴 ~Q 𝐵)))
18 eleq1 2819 . . . 4 (𝑥 = 𝐵 → (𝑥Q𝐵Q))
19 breq1 5092 . . . 4 (𝑥 = 𝐵 → (𝑥 ~Q 𝐵𝐵 ~Q 𝐵))
2018, 19anbi12d 632 . . 3 (𝑥 = 𝐵 → ((𝑥Q𝑥 ~Q 𝐵) ↔ (𝐵Q𝐵 ~Q 𝐵)))
2117, 20moi 3672 . 2 (((𝐴Q𝐵Q) ∧ ∃*𝑥(𝑥Q𝑥 ~Q 𝐵) ∧ ((𝐴Q𝐴 ~Q 𝐵) ∧ (𝐵Q𝐵 ~Q 𝐵))) → 𝐴 = 𝐵)
221, 8, 9, 14, 21syl112anc 1376 1 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ∃*wmo 2533  ∃!wreu 3344  ∃*wrmo 3345   class class class wbr 5089   × cxp 5612   Er wer 8619  Ncnpi 10735   ~Q ceq 10742  Qcnq 10743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-omul 8390  df-er 8622  df-ni 10763  df-mi 10765  df-lti 10766  df-enq 10802  df-nq 10803
This theorem is referenced by:  nqereq  10826  ltsonq  10860
  Copyright terms: Public domain W3C validator