MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqeq Structured version   Visualization version   GIF version

Theorem enqeq 10877
Description: Corollary of nqereu 10872: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
enqeq ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐴 = 𝐵)

Proof of Theorem enqeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3simpa 1149 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐴Q𝐵Q))
2 elpqn 10868 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
323ad2ant2 1135 . . . 4 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵 ∈ (N × N))
4 nqereu 10872 . . . 4 (𝐵 ∈ (N × N) → ∃!𝑥Q 𝑥 ~Q 𝐵)
5 reurmo 3359 . . . 4 (∃!𝑥Q 𝑥 ~Q 𝐵 → ∃*𝑥Q 𝑥 ~Q 𝐵)
63, 4, 53syl 18 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ∃*𝑥Q 𝑥 ~Q 𝐵)
7 df-rmo 3356 . . 3 (∃*𝑥Q 𝑥 ~Q 𝐵 ↔ ∃*𝑥(𝑥Q𝑥 ~Q 𝐵))
86, 7sylib 217 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ∃*𝑥(𝑥Q𝑥 ~Q 𝐵))
9 3simpb 1150 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐴Q𝐴 ~Q 𝐵))
10 simp2 1138 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵Q)
11 enqer 10864 . . . . 5 ~Q Er (N × N)
1211a1i 11 . . . 4 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ~Q Er (N × N))
1312, 3erref 8675 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵 ~Q 𝐵)
1410, 13jca 513 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐵Q𝐵 ~Q 𝐵))
15 eleq1 2826 . . . 4 (𝑥 = 𝐴 → (𝑥Q𝐴Q))
16 breq1 5113 . . . 4 (𝑥 = 𝐴 → (𝑥 ~Q 𝐵𝐴 ~Q 𝐵))
1715, 16anbi12d 632 . . 3 (𝑥 = 𝐴 → ((𝑥Q𝑥 ~Q 𝐵) ↔ (𝐴Q𝐴 ~Q 𝐵)))
18 eleq1 2826 . . . 4 (𝑥 = 𝐵 → (𝑥Q𝐵Q))
19 breq1 5113 . . . 4 (𝑥 = 𝐵 → (𝑥 ~Q 𝐵𝐵 ~Q 𝐵))
2018, 19anbi12d 632 . . 3 (𝑥 = 𝐵 → ((𝑥Q𝑥 ~Q 𝐵) ↔ (𝐵Q𝐵 ~Q 𝐵)))
2117, 20moi 3681 . 2 (((𝐴Q𝐵Q) ∧ ∃*𝑥(𝑥Q𝑥 ~Q 𝐵) ∧ ((𝐴Q𝐴 ~Q 𝐵) ∧ (𝐵Q𝐵 ~Q 𝐵))) → 𝐴 = 𝐵)
221, 8, 9, 14, 21syl112anc 1375 1 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  ∃*wmo 2537  ∃!wreu 3354  ∃*wrmo 3355   class class class wbr 5110   × cxp 5636   Er wer 8652  Ncnpi 10787   ~Q ceq 10794  Qcnq 10795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-oadd 8421  df-omul 8422  df-er 8655  df-ni 10815  df-mi 10817  df-lti 10818  df-enq 10854  df-nq 10855
This theorem is referenced by:  nqereq  10878  ltsonq  10912
  Copyright terms: Public domain W3C validator