MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqeq Structured version   Visualization version   GIF version

Theorem enqeq 10933
Description: Corollary of nqereu 10928: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
enqeq ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐴 = 𝐵)

Proof of Theorem enqeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3simpa 1146 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐴Q𝐵Q))
2 elpqn 10924 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
323ad2ant2 1132 . . . 4 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵 ∈ (N × N))
4 nqereu 10928 . . . 4 (𝐵 ∈ (N × N) → ∃!𝑥Q 𝑥 ~Q 𝐵)
5 reurmo 3377 . . . 4 (∃!𝑥Q 𝑥 ~Q 𝐵 → ∃*𝑥Q 𝑥 ~Q 𝐵)
63, 4, 53syl 18 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ∃*𝑥Q 𝑥 ~Q 𝐵)
7 df-rmo 3374 . . 3 (∃*𝑥Q 𝑥 ~Q 𝐵 ↔ ∃*𝑥(𝑥Q𝑥 ~Q 𝐵))
86, 7sylib 217 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ∃*𝑥(𝑥Q𝑥 ~Q 𝐵))
9 3simpb 1147 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐴Q𝐴 ~Q 𝐵))
10 simp2 1135 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵Q)
11 enqer 10920 . . . . 5 ~Q Er (N × N)
1211a1i 11 . . . 4 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → ~Q Er (N × N))
1312, 3erref 8727 . . 3 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐵 ~Q 𝐵)
1410, 13jca 510 . 2 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → (𝐵Q𝐵 ~Q 𝐵))
15 eleq1 2819 . . . 4 (𝑥 = 𝐴 → (𝑥Q𝐴Q))
16 breq1 5152 . . . 4 (𝑥 = 𝐴 → (𝑥 ~Q 𝐵𝐴 ~Q 𝐵))
1715, 16anbi12d 629 . . 3 (𝑥 = 𝐴 → ((𝑥Q𝑥 ~Q 𝐵) ↔ (𝐴Q𝐴 ~Q 𝐵)))
18 eleq1 2819 . . . 4 (𝑥 = 𝐵 → (𝑥Q𝐵Q))
19 breq1 5152 . . . 4 (𝑥 = 𝐵 → (𝑥 ~Q 𝐵𝐵 ~Q 𝐵))
2018, 19anbi12d 629 . . 3 (𝑥 = 𝐵 → ((𝑥Q𝑥 ~Q 𝐵) ↔ (𝐵Q𝐵 ~Q 𝐵)))
2117, 20moi 3715 . 2 (((𝐴Q𝐵Q) ∧ ∃*𝑥(𝑥Q𝑥 ~Q 𝐵) ∧ ((𝐴Q𝐴 ~Q 𝐵) ∧ (𝐵Q𝐵 ~Q 𝐵))) → 𝐴 = 𝐵)
221, 8, 9, 14, 21syl112anc 1372 1 ((𝐴Q𝐵Q𝐴 ~Q 𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  ∃*wmo 2530  ∃!wreu 3372  ∃*wrmo 3373   class class class wbr 5149   × cxp 5675   Er wer 8704  Ncnpi 10843   ~Q ceq 10850  Qcnq 10851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-oadd 8474  df-omul 8475  df-er 8707  df-ni 10871  df-mi 10873  df-lti 10874  df-enq 10910  df-nq 10911
This theorem is referenced by:  nqereq  10934  ltsonq  10968
  Copyright terms: Public domain W3C validator