| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enqeq | Structured version Visualization version GIF version | ||
| Description: Corollary of nqereu 10882: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enqeq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) | |
| 2 | elpqn 10878 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 3 | 2 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ (N × N)) |
| 4 | nqereu 10882 | . . . 4 ⊢ (𝐵 ∈ (N × N) → ∃!𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
| 5 | reurmo 3357 | . . . 4 ⊢ (∃!𝑥 ∈ Q 𝑥 ~Q 𝐵 → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) |
| 7 | df-rmo 3354 | . . 3 ⊢ (∃*𝑥 ∈ Q 𝑥 ~Q 𝐵 ↔ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) |
| 9 | 3simpb 1149 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵)) | |
| 10 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ Q) | |
| 11 | enqer 10874 | . . . . 5 ⊢ ~Q Er (N × N) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) |
| 13 | 12, 3 | erref 8691 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q 𝐵) |
| 14 | 10, 13 | jca 511 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵)) |
| 15 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Q ↔ 𝐴 ∈ Q)) | |
| 16 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ~Q 𝐵 ↔ 𝐴 ~Q 𝐵)) | |
| 17 | 15, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵))) |
| 18 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ Q ↔ 𝐵 ∈ Q)) | |
| 19 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ~Q 𝐵 ↔ 𝐵 ~Q 𝐵)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) |
| 21 | 17, 20 | moi 3689 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ∧ ((𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵) ∧ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) → 𝐴 = 𝐵) |
| 22 | 1, 8, 9, 14, 21 | syl112anc 1376 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 ∃!wreu 3352 ∃*wrmo 3353 class class class wbr 5107 × cxp 5636 Er wer 8668 Ncnpi 10797 ~Q ceq 10804 Qcnq 10805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-mi 10827 df-lti 10828 df-enq 10864 df-nq 10865 |
| This theorem is referenced by: nqereq 10888 ltsonq 10922 |
| Copyright terms: Public domain | W3C validator |