![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enqeq | Structured version Visualization version GIF version |
Description: Corollary of nqereu 10924: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enqeq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1149 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) | |
2 | elpqn 10920 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
3 | 2 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ (N × N)) |
4 | nqereu 10924 | . . . 4 ⊢ (𝐵 ∈ (N × N) → ∃!𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
5 | reurmo 3380 | . . . 4 ⊢ (∃!𝑥 ∈ Q 𝑥 ~Q 𝐵 → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥 ∈ Q 𝑥 ~Q 𝐵) |
7 | df-rmo 3377 | . . 3 ⊢ (∃*𝑥 ∈ Q 𝑥 ~Q 𝐵 ↔ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵)) |
9 | 3simpb 1150 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵)) | |
10 | simp2 1138 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ∈ Q) | |
11 | enqer 10916 | . . . . 5 ⊢ ~Q Er (N × N) | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) |
13 | 12, 3 | erref 8723 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q 𝐵) |
14 | 10, 13 | jca 513 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵)) |
15 | eleq1 2822 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Q ↔ 𝐴 ∈ Q)) | |
16 | breq1 5152 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ~Q 𝐵 ↔ 𝐴 ~Q 𝐵)) | |
17 | 15, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵))) |
18 | eleq1 2822 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ Q ↔ 𝐵 ∈ Q)) | |
19 | breq1 5152 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ~Q 𝐵 ↔ 𝐵 ~Q 𝐵)) | |
20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ↔ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) |
21 | 17, 20 | moi 3715 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ ∃*𝑥(𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵) ∧ ((𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵) ∧ (𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵))) → 𝐴 = 𝐵) |
22 | 1, 8, 9, 14, 21 | syl112anc 1375 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃*wmo 2533 ∃!wreu 3375 ∃*wrmo 3376 class class class wbr 5149 × cxp 5675 Er wer 8700 Ncnpi 10839 ~Q ceq 10846 Qcnq 10847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-oadd 8470 df-omul 8471 df-er 8703 df-ni 10867 df-mi 10869 df-lti 10870 df-enq 10906 df-nq 10907 |
This theorem is referenced by: nqereq 10930 ltsonq 10964 |
Copyright terms: Public domain | W3C validator |