MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2ani Structured version   Visualization version   GIF version

Theorem mp2ani 698
Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mp2ani.1 𝜓
mp2ani.2 𝜒
mp2ani.3 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mp2ani (𝜑𝜃)

Proof of Theorem mp2ani
StepHypRef Expression
1 mp2ani.2 . 2 𝜒
2 mp2ani.1 . . 3 𝜓
3 mp2ani.3 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpani 696 . 2 (𝜑 → (𝜒𝜃))
51, 4mpi 20 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  inf0  9640  dfom3  9666  dfac5lem4  10145  dfac5lem4OLD  10147  dfac9  10156  cflem  10264  cflemOLD  10265  canthp1lem2  10672  addsrpr  11094  mulsrpr  11095  trclublem  15019  gcdaddmlem  16548  tgjustf  28457  sto1i  32222  stji1i  32228  kur14lem9  35241  dfon2lem4  35809  rtrclex  43608  comptiunov2i  43697
  Copyright terms: Public domain W3C validator