| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mp2ani.1 | ⊢ 𝜓 |
| mp2ani.2 | ⊢ 𝜒 |
| mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mp2ani | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
| 2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
| 3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpani 696 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | 1, 4 | mpi 20 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: inf0 9518 dfom3 9544 dfac5lem4 10024 dfac5lem4OLD 10026 dfac9 10035 cflem 10143 cflemOLD 10144 canthp1lem2 10551 addsrpr 10973 mulsrpr 10974 trclublem 14904 gcdaddmlem 16437 tgjustf 28452 sto1i 32218 stji1i 32224 kur14lem9 35279 dfon2lem4 35849 rtrclex 43734 comptiunov2i 43823 |
| Copyright terms: Public domain | W3C validator |