![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mp2ani.1 | ⊢ 𝜓 |
mp2ani.2 | ⊢ 𝜒 |
mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mp2ani | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpani 695 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | 1, 4 | mpi 20 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: inf0 9616 dfom3 9642 dfac5lem4 10121 dfac9 10131 cflem 10241 canthp1lem2 10648 addsrpr 11070 mulsrpr 11071 trclublem 14942 gcdaddmlem 16465 tgjustf 27724 sto1i 31489 stji1i 31495 kur14lem9 34205 dfon2lem4 34758 rtrclex 42368 comptiunov2i 42457 |
Copyright terms: Public domain | W3C validator |