| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mp2ani.1 | ⊢ 𝜓 |
| mp2ani.2 | ⊢ 𝜒 |
| mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mp2ani | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
| 2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
| 3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpani 696 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | 1, 4 | mpi 20 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: inf0 9643 dfom3 9669 dfac5lem4 10148 dfac5lem4OLD 10150 dfac9 10159 cflem 10267 cflemOLD 10268 canthp1lem2 10675 addsrpr 11097 mulsrpr 11098 trclublem 15016 gcdaddmlem 16543 tgjustf 28417 sto1i 32183 stji1i 32189 kur14lem9 35178 dfon2lem4 35746 rtrclex 43592 comptiunov2i 43681 |
| Copyright terms: Public domain | W3C validator |