MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2ani Structured version   Visualization version   GIF version

Theorem mp2ani 698
Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mp2ani.1 𝜓
mp2ani.2 𝜒
mp2ani.3 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mp2ani (𝜑𝜃)

Proof of Theorem mp2ani
StepHypRef Expression
1 mp2ani.2 . 2 𝜒
2 mp2ani.1 . . 3 𝜓
3 mp2ani.3 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpani 696 . 2 (𝜑 → (𝜒𝜃))
51, 4mpi 20 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  inf0  9581  dfom3  9607  dfac5lem4  10086  dfac5lem4OLD  10088  dfac9  10097  cflem  10205  cflemOLD  10206  canthp1lem2  10613  addsrpr  11035  mulsrpr  11036  trclublem  14968  gcdaddmlem  16501  tgjustf  28407  sto1i  32172  stji1i  32178  kur14lem9  35208  dfon2lem4  35781  rtrclex  43613  comptiunov2i  43702
  Copyright terms: Public domain W3C validator