Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mp2ani.1 | ⊢ 𝜓 |
mp2ani.2 | ⊢ 𝜒 |
mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mp2ani | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpani 693 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | 1, 4 | mpi 20 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: inf0 9379 dfom3 9405 dfac5lem4 9882 dfac9 9892 cflem 10002 canthp1lem2 10409 addsrpr 10831 mulsrpr 10832 trclublem 14706 gcdaddmlem 16231 tgjustf 26834 sto1i 30598 stji1i 30604 kur14lem9 33176 dfon2lem4 33762 rtrclex 41225 comptiunov2i 41314 |
Copyright terms: Public domain | W3C validator |