Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mp2ani.1 | ⊢ 𝜓 |
mp2ani.2 | ⊢ 𝜒 |
mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mp2ani | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpani 692 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | 1, 4 | mpi 20 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: inf0 9309 dfom3 9335 dfac5lem4 9813 dfac9 9823 cflem 9933 canthp1lem2 10340 addsrpr 10762 mulsrpr 10763 trclublem 14634 gcdaddmlem 16159 tgjustf 26738 sto1i 30499 stji1i 30505 kur14lem9 33076 dfon2lem4 33668 rtrclex 41114 comptiunov2i 41203 |
Copyright terms: Public domain | W3C validator |