| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mp2ani.1 | ⊢ 𝜓 |
| mp2ani.2 | ⊢ 𝜒 |
| mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mp2ani | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
| 2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
| 3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpani 696 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | 1, 4 | mpi 20 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: inf0 9511 dfom3 9537 dfac5lem4 10014 dfac5lem4OLD 10016 dfac9 10025 cflem 10133 cflemOLD 10134 canthp1lem2 10541 addsrpr 10963 mulsrpr 10964 trclublem 14899 gcdaddmlem 16432 tgjustf 28449 sto1i 32211 stji1i 32217 kur14lem9 35246 dfon2lem4 35819 rtrclex 43649 comptiunov2i 43738 |
| Copyright terms: Public domain | W3C validator |