| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2ani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mp2ani.1 | ⊢ 𝜓 |
| mp2ani.2 | ⊢ 𝜒 |
| mp2ani.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mp2ani | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2ani.2 | . 2 ⊢ 𝜒 | |
| 2 | mp2ani.1 | . . 3 ⊢ 𝜓 | |
| 3 | mp2ani.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpani 696 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | 1, 4 | mpi 20 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: inf0 9581 dfom3 9607 dfac5lem4 10086 dfac5lem4OLD 10088 dfac9 10097 cflem 10205 cflemOLD 10206 canthp1lem2 10613 addsrpr 11035 mulsrpr 11036 trclublem 14968 gcdaddmlem 16501 tgjustf 28407 sto1i 32172 stji1i 32178 kur14lem9 35208 dfon2lem4 35781 rtrclex 43613 comptiunov2i 43702 |
| Copyright terms: Public domain | W3C validator |