Proof of Theorem rtrclex
Step | Hyp | Ref
| Expression |
1 | | ssun1 4031 |
. . . 4
⊢ 𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
2 | | coundir 5937 |
. . . . . . 7
⊢ ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) |
3 | | coundi 5936 |
. . . . . . . . 9
⊢ (𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((𝐴 ∘ 𝐴) ∪ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) |
4 | | cossxp 5958 |
. . . . . . . . . . 11
⊢ (𝐴 ∘ 𝐴) ⊆ (dom 𝐴 × ran 𝐴) |
5 | | ssun1 4031 |
. . . . . . . . . . . 12
⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) |
6 | | ssun2 4032 |
. . . . . . . . . . . 12
⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) |
7 | | xpss12 5418 |
. . . . . . . . . . . 12
⊢ ((dom
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom 𝐴 × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
8 | 5, 6, 7 | mp2an 679 |
. . . . . . . . . . 11
⊢ (dom
𝐴 × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
9 | 4, 8 | sstri 3861 |
. . . . . . . . . 10
⊢ (𝐴 ∘ 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
10 | | cossxp 5958 |
. . . . . . . . . . 11
⊢ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴) |
11 | | dmxpss 5865 |
. . . . . . . . . . . 12
⊢ dom ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴) |
12 | | xpss12 5418 |
. . . . . . . . . . . 12
⊢ ((dom
((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
13 | 11, 6, 12 | mp2an 679 |
. . . . . . . . . . 11
⊢ (dom
((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
14 | 10, 13 | sstri 3861 |
. . . . . . . . . 10
⊢ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
15 | 9, 14 | unssi 4043 |
. . . . . . . . 9
⊢ ((𝐴 ∘ 𝐴) ∪ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
16 | 3, 15 | eqsstri 3885 |
. . . . . . . 8
⊢ (𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
17 | | coundi 5936 |
. . . . . . . . 9
⊢ (((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) |
18 | | cossxp 5958 |
. . . . . . . . . . 11
⊢ (((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ⊆ (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
19 | | rnxpss 5866 |
. . . . . . . . . . . 12
⊢ ran ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴) |
20 | | xpss12 5418 |
. . . . . . . . . . . 12
⊢ ((dom
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
21 | 5, 19, 20 | mp2an 679 |
. . . . . . . . . . 11
⊢ (dom
𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
22 | 18, 21 | sstri 3861 |
. . . . . . . . . 10
⊢ (((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
23 | | xpidtr 5819 |
. . . . . . . . . 10
⊢ (((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
24 | 22, 23 | unssi 4043 |
. . . . . . . . 9
⊢ ((((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
25 | 17, 24 | eqsstri 3885 |
. . . . . . . 8
⊢ (((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
26 | 16, 25 | unssi 4043 |
. . . . . . 7
⊢ ((𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
27 | 2, 26 | eqsstri 3885 |
. . . . . 6
⊢ ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
28 | | ssun2 4032 |
. . . . . 6
⊢ ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
29 | 27, 28 | sstri 3861 |
. . . . 5
⊢ ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
30 | | dmun 5625 |
. . . . . . . . . . 11
⊢ dom
(𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
31 | | dmxpid 5640 |
. . . . . . . . . . . . 13
⊢ dom ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
32 | 31 | uneq2i 4019 |
. . . . . . . . . . . 12
⊢ (dom
𝐴 ∪ dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) |
33 | | ssequn1 4038 |
. . . . . . . . . . . . 13
⊢ (dom
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)) |
34 | 5, 33 | mpbi 222 |
. . . . . . . . . . . 12
⊢ (dom
𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
35 | 32, 34 | eqtri 2796 |
. . . . . . . . . . 11
⊢ (dom
𝐴 ∪ dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
36 | 30, 35 | eqtri 2796 |
. . . . . . . . . 10
⊢ dom
(𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
37 | | rnun 5841 |
. . . . . . . . . . 11
⊢ ran
(𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
38 | | rnxpid 5867 |
. . . . . . . . . . . . 13
⊢ ran ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
39 | 38 | uneq2i 4019 |
. . . . . . . . . . . 12
⊢ (ran
𝐴 ∪ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) |
40 | | ssequn1 4038 |
. . . . . . . . . . . . 13
⊢ (ran
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)) |
41 | 6, 40 | mpbi 222 |
. . . . . . . . . . . 12
⊢ (ran
𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
42 | 39, 41 | eqtri 2796 |
. . . . . . . . . . 11
⊢ (ran
𝐴 ∪ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
43 | 37, 42 | eqtri 2796 |
. . . . . . . . . 10
⊢ ran
(𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
44 | 36, 43 | uneq12i 4020 |
. . . . . . . . 9
⊢ (dom
(𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) |
45 | | unidm 4011 |
. . . . . . . . 9
⊢ ((dom
𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
46 | 44, 45 | eqtri 2796 |
. . . . . . . 8
⊢ (dom
(𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = (dom 𝐴 ∪ ran 𝐴) |
47 | 46 | reseq2i 5689 |
. . . . . . 7
⊢ ( I
↾ (dom (𝐴 ∪ ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)) |
48 | | fnresi 6304 |
. . . . . . . . 9
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) Fn (dom 𝐴 ∪ ran 𝐴) |
49 | | fnrel 6284 |
. . . . . . . . 9
⊢ (( I
↾ (dom 𝐴 ∪ ran
𝐴)) Fn (dom 𝐴 ∪ ran 𝐴) → Rel ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
50 | | relssdmrn 5956 |
. . . . . . . . 9
⊢ (Rel ( I
↾ (dom 𝐴 ∪ ran
𝐴)) → ( I ↾ (dom
𝐴 ∪ ran 𝐴)) ⊆ (dom ( I ↾ (dom
𝐴 ∪ ran 𝐴)) × ran ( I ↾ (dom
𝐴 ∪ ran 𝐴)))) |
51 | 48, 49, 50 | mp2b 10 |
. . . . . . . 8
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ (dom ( I
↾ (dom 𝐴 ∪ ran
𝐴)) × ran ( I ↾
(dom 𝐴 ∪ ran 𝐴))) |
52 | | dmresi 5760 |
. . . . . . . . 9
⊢ dom ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
53 | | rnresi 5780 |
. . . . . . . . 9
⊢ ran ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
54 | 52, 53 | xpeq12i 5431 |
. . . . . . . 8
⊢ (dom ( I
↾ (dom 𝐴 ∪ ran
𝐴)) × ran ( I ↾
(dom 𝐴 ∪ ran 𝐴))) = ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
55 | 51, 54 | sseqtri 3887 |
. . . . . . 7
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
56 | 47, 55 | eqsstri 3885 |
. . . . . 6
⊢ ( I
↾ (dom (𝐴 ∪ ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) |
57 | 56, 28 | sstri 3861 |
. . . . 5
⊢ ( I
↾ (dom (𝐴 ∪ ((dom
𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) |
58 | 29, 57 | pm3.2i 463 |
. . . 4
⊢ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) |
59 | | rtrclexlem 39368 |
. . . . 5
⊢ (𝐴 ∈ V → (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∈ V) |
60 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) |
61 | 60, 60 | coeq12d 5581 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (𝑥 ∘ 𝑥) = ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) |
62 | 61, 60 | sseq12d 3884 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝑥 ∘ 𝑥) ⊆ 𝑥 ↔ ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) |
63 | | dmeq 5618 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) |
64 | | rneq 5646 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) |
65 | 63, 64 | uneq12d 4023 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) |
66 | 65 | reseq2d 5692 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))) |
67 | 66, 60 | sseq12d 3884 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) |
68 | 62, 67 | anbi12d 621 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))) |
69 | 68 | cleq2lem 39359 |
. . . . . . 7
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) ↔ (𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))))) |
70 | 69 | biimprd 240 |
. . . . . 6
⊢ (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)))) |
71 | 70 | adantl 474 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) → ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)))) |
72 | 59, 71 | spcimedv 3507 |
. . . 4
⊢ (𝐴 ∈ V → ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)))) |
73 | 1, 58, 72 | mp2ani 685 |
. . 3
⊢ (𝐴 ∈ V → ∃𝑥(𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))) |
74 | | exsimpl 1831 |
. . . 4
⊢
(∃𝑥(𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) → ∃𝑥 𝐴 ⊆ 𝑥) |
75 | | vex 3412 |
. . . . . 6
⊢ 𝑥 ∈ V |
76 | 75 | ssex 5077 |
. . . . 5
⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
77 | 76 | exlimiv 1889 |
. . . 4
⊢
(∃𝑥 𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
78 | 74, 77 | syl 17 |
. . 3
⊢
(∃𝑥(𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) → 𝐴 ∈ V) |
79 | 73, 78 | impbii 201 |
. 2
⊢ (𝐴 ∈ V ↔ ∃𝑥(𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))) |
80 | | intexab 5094 |
. 2
⊢
(∃𝑥(𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) |
81 | 79, 80 | bitri 267 |
1
⊢ (𝐴 ∈ V ↔ ∩ {𝑥
∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) |