Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtrclex Structured version   Visualization version   GIF version

Theorem rtrclex 41535
Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
rtrclex (𝐴 ∈ V ↔ {𝑥 ∣ (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rtrclex
StepHypRef Expression
1 ssun1 4118 . . . 4 𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
2 coundir 6180 . . . . . . 7 ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
3 coundi 6179 . . . . . . . . 9 (𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((𝐴𝐴) ∪ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
4 cossxp 6204 . . . . . . . . . . 11 (𝐴𝐴) ⊆ (dom 𝐴 × ran 𝐴)
5 ssun1 4118 . . . . . . . . . . . 12 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 ssun2 4119 . . . . . . . . . . . 12 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
7 xpss12 5629 . . . . . . . . . . . 12 ((dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom 𝐴 × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
85, 6, 7mp2an 689 . . . . . . . . . . 11 (dom 𝐴 × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
94, 8sstri 3940 . . . . . . . . . 10 (𝐴𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
10 cossxp 6204 . . . . . . . . . . 11 (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴)
11 dmxpss 6103 . . . . . . . . . . . 12 dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴)
12 xpss12 5629 . . . . . . . . . . . 12 ((dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
1311, 6, 12mp2an 689 . . . . . . . . . . 11 (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
1410, 13sstri 3940 . . . . . . . . . 10 (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
159, 14unssi 4131 . . . . . . . . 9 ((𝐴𝐴) ∪ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
163, 15eqsstri 3965 . . . . . . . 8 (𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
17 coundi 6179 . . . . . . . . 9 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
18 cossxp 6204 . . . . . . . . . . 11 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ⊆ (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
19 rnxpss 6104 . . . . . . . . . . . 12 ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴)
20 xpss12 5629 . . . . . . . . . . . 12 ((dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
215, 19, 20mp2an 689 . . . . . . . . . . 11 (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2218, 21sstri 3940 . . . . . . . . . 10 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
23 xpidtr 6056 . . . . . . . . . 10 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2422, 23unssi 4131 . . . . . . . . 9 ((((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2517, 24eqsstri 3965 . . . . . . . 8 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2616, 25unssi 4131 . . . . . . 7 ((𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
272, 26eqsstri 3965 . . . . . 6 ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
28 ssun2 4119 . . . . . 6 ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
2927, 28sstri 3940 . . . . 5 ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
30 dmun 5846 . . . . . . . . . . 11 dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
31 dmxpid 5865 . . . . . . . . . . . 12 dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
3231uneq2i 4106 . . . . . . . . . . 11 (dom 𝐴 ∪ dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
33 ssequn1 4126 . . . . . . . . . . . 12 (dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
345, 33mpbi 229 . . . . . . . . . . 11 (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
3530, 32, 343eqtri 2768 . . . . . . . . . 10 dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
36 rnun 6078 . . . . . . . . . . 11 ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
37 rnxpid 6105 . . . . . . . . . . . 12 ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
3837uneq2i 4106 . . . . . . . . . . 11 (ran 𝐴 ∪ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
39 ssequn1 4126 . . . . . . . . . . . 12 (ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
406, 39mpbi 229 . . . . . . . . . . 11 (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
4136, 38, 403eqtri 2768 . . . . . . . . . 10 ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
4235, 41uneq12i 4107 . . . . . . . . 9 (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴))
43 unidm 4098 . . . . . . . . 9 ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
4442, 43eqtri 2764 . . . . . . . 8 (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = (dom 𝐴 ∪ ran 𝐴)
4544reseq2i 5914 . . . . . . 7 ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) = ( I ↾ (dom 𝐴 ∪ ran 𝐴))
46 idssxp 5982 . . . . . . 7 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
4745, 46eqsstri 3965 . . . . . 6 ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
4847, 28sstri 3940 . . . . 5 ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
4929, 48pm3.2i 471 . . . 4 (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
50 rtrclexlem 41534 . . . . 5 (𝐴 ∈ V → (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∈ V)
51 id 22 . . . . . . . . . . 11 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
5251, 51coeq12d 5800 . . . . . . . . . 10 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (𝑥𝑥) = ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
5352, 51sseq12d 3964 . . . . . . . . 9 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
54 dmeq 5839 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
55 rneq 5871 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
5654, 55uneq12d 4110 . . . . . . . . . . 11 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
5756reseq2d 5917 . . . . . . . . . 10 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))))
5857, 51sseq12d 3964 . . . . . . . . 9 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
5953, 58anbi12d 631 . . . . . . . 8 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))))
6059cleq2lem 41526 . . . . . . 7 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) ↔ (𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))))
6160biimprd 247 . . . . . 6 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))))
6261adantl 482 . . . . 5 ((𝐴 ∈ V ∧ 𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) → ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))))
6350, 62spcimedv 3543 . . . 4 (𝐴 ∈ V → ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → ∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))))
641, 49, 63mp2ani 695 . . 3 (𝐴 ∈ V → ∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)))
65 exsimpl 1870 . . . 4 (∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) → ∃𝑥 𝐴𝑥)
66 vex 3445 . . . . . 6 𝑥 ∈ V
6766ssex 5262 . . . . 5 (𝐴𝑥𝐴 ∈ V)
6867exlimiv 1932 . . . 4 (∃𝑥 𝐴𝑥𝐴 ∈ V)
6965, 68syl 17 . . 3 (∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) → 𝐴 ∈ V)
7064, 69impbii 208 . 2 (𝐴 ∈ V ↔ ∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)))
71 intexab 5280 . 2 (∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) ↔ {𝑥 ∣ (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V)
7270, 71bitri 274 1 (𝐴 ∈ V ↔ {𝑥 ∣ (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  {cab 2713  Vcvv 3441  cun 3895  wss 3897   cint 4893   I cid 5511   × cxp 5612  dom cdm 5614  ran crn 5615  cres 5616  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator