| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 695 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mp2ani 698 frpoind 6294 ordelinel 6414 dif20el 8430 domunfican 9230 frind 9665 mulgt1OLD 12001 recgt1i 12040 recreclt 12042 ledivp1i 12068 nngt0 12177 nnrecgt0 12189 elnnnn0c 12447 elnnz1 12519 recnz 12569 uz3m2nn 12813 ledivge1le 12984 xrub 13232 1mod 13825 expubnd 14103 expnbnd 14157 expnlbnd 14158 hashgt23el 14349 resqrex 15175 sin02gt0 16119 oddge22np1 16278 dvdsnprmd 16619 prmlem1 17037 prmlem2 17049 lsmss2 19564 ovolicopnf 25441 voliunlem3 25469 volsup 25473 volivth 25524 itg2seq 25659 itg2monolem2 25668 reeff1olem 26372 sinq12gt0 26432 logdivlti 26545 logdivlt 26546 efexple 27208 gausslemma2dlem4 27296 axlowdimlem16 28920 axlowdimlem17 28921 axlowdim 28924 rusgr1vtx 29552 dmdbr2 32265 dfon2lem3 35758 dfon2lem7 35762 nn0prpwlem 36295 bj-resta 37069 tan2h 37591 mblfinlem4 37639 m1mod0mod1 47339 m1modmmod 47343 iccpartgt 47412 gbegt5 47746 gbowgt5 47747 sbgoldbalt 47766 sgoldbeven3prm 47768 nnsum4primesodd 47781 nnsum4primesoddALTV 47782 evengpoap3 47784 nnsum4primesevenALTV 47786 regt1loggt0 48522 rege1logbrege0 48544 rege1logbzge0 48545 |
| Copyright terms: Public domain | W3C validator |