Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 691 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mp2ani 694 frpoind 6230 wfiOLD 6239 ordelinel 6349 dif20el 8297 domunfican 9017 frind 9439 mulgt1 11764 recgt1i 11802 recreclt 11804 ledivp1i 11830 nngt0 11934 nnrecgt0 11946 elnnnn0c 12208 elnnz1 12276 recnz 12325 uz3m2nn 12560 ledivge1le 12730 xrub 12975 1mod 13551 expubnd 13823 expnbnd 13875 expnlbnd 13876 hashgt23el 14067 resqrex 14890 sin02gt0 15829 oddge22np1 15986 dvdsnprmd 16323 prmlem1 16737 prmlem2 16749 lsmss2 19188 ovolicopnf 24593 voliunlem3 24621 volsup 24625 volivth 24676 itg2seq 24812 itg2monolem2 24821 reeff1olem 25510 sinq12gt0 25569 logdivlti 25680 logdivlt 25681 efexple 26334 gausslemma2dlem4 26422 axlowdimlem16 27228 axlowdimlem17 27229 axlowdim 27232 rusgr1vtx 27858 dmdbr2 30566 dfon2lem3 33667 dfon2lem7 33671 nn0prpwlem 34438 bj-resta 35194 tan2h 35696 mblfinlem4 35744 m1mod0mod1 44709 iccpartgt 44767 gbegt5 45101 gbowgt5 45102 sbgoldbalt 45121 sgoldbeven3prm 45123 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 evengpoap3 45139 nnsum4primesevenALTV 45141 m1modmmod 45755 difmodm1lt 45756 regt1loggt0 45770 rege1logbrege0 45792 rege1logbzge0 45793 |
Copyright terms: Public domain | W3C validator |