| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 695 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mp2ani 698 frpoind 6289 ordelinel 6409 dif20el 8420 domunfican 9206 frind 9640 mulgt1OLD 11977 recgt1i 12016 recreclt 12018 ledivp1i 12044 nngt0 12153 nnrecgt0 12165 elnnnn0c 12423 elnnz1 12495 recnz 12545 uz3m2nn 12789 ledivge1le 12960 xrub 13208 1mod 13804 expubnd 14082 expnbnd 14136 expnlbnd 14137 hashgt23el 14328 resqrex 15154 sin02gt0 16098 oddge22np1 16257 dvdsnprmd 16598 prmlem1 17016 prmlem2 17028 lsmss2 19577 ovolicopnf 25450 voliunlem3 25478 volsup 25482 volivth 25533 itg2seq 25668 itg2monolem2 25677 reeff1olem 26381 sinq12gt0 26441 logdivlti 26554 logdivlt 26555 efexple 27217 gausslemma2dlem4 27305 axlowdimlem16 28933 axlowdimlem17 28934 axlowdim 28937 rusgr1vtx 29565 dmdbr2 32278 dfon2lem3 35818 dfon2lem7 35822 nn0prpwlem 36355 bj-resta 37129 tan2h 37651 mblfinlem4 37699 m1mod0mod1 47384 m1modmmod 47388 iccpartgt 47457 gbegt5 47791 gbowgt5 47792 sbgoldbalt 47811 sgoldbeven3prm 47813 nnsum4primesodd 47826 nnsum4primesoddALTV 47827 evengpoap3 47829 nnsum4primesevenALTV 47831 regt1loggt0 48567 rege1logbrege0 48589 rege1logbzge0 48590 |
| Copyright terms: Public domain | W3C validator |