![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 694 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: mp2ani 697 frpoind 6344 wfiOLD 6353 ordelinel 6466 dif20el 8505 domunfican 9320 frind 9745 mulgt1 12073 recgt1i 12111 recreclt 12113 ledivp1i 12139 nngt0 12243 nnrecgt0 12255 elnnnn0c 12517 elnnz1 12588 recnz 12637 uz3m2nn 12875 ledivge1le 13045 xrub 13291 1mod 13868 expubnd 14142 expnbnd 14195 expnlbnd 14196 hashgt23el 14384 resqrex 15197 sin02gt0 16135 oddge22np1 16292 dvdsnprmd 16627 prmlem1 17041 prmlem2 17053 lsmss2 19535 ovolicopnf 25041 voliunlem3 25069 volsup 25073 volivth 25124 itg2seq 25260 itg2monolem2 25269 reeff1olem 25958 sinq12gt0 26017 logdivlti 26128 logdivlt 26129 efexple 26784 gausslemma2dlem4 26872 axlowdimlem16 28215 axlowdimlem17 28216 axlowdim 28219 rusgr1vtx 28845 dmdbr2 31556 dfon2lem3 34757 dfon2lem7 34761 nn0prpwlem 35207 bj-resta 35977 tan2h 36480 mblfinlem4 36528 m1mod0mod1 46037 iccpartgt 46095 gbegt5 46429 gbowgt5 46430 sbgoldbalt 46449 sgoldbeven3prm 46451 nnsum4primesodd 46464 nnsum4primesoddALTV 46465 evengpoap3 46467 nnsum4primesevenALTV 46469 m1modmmod 47207 difmodm1lt 47208 regt1loggt0 47222 rege1logbrege0 47244 rege1logbzge0 47245 |
Copyright terms: Public domain | W3C validator |