![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 694 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mp2ani 697 frpoind 6374 wfiOLD 6383 ordelinel 6496 dif20el 8561 domunfican 9389 frind 9819 mulgt1OLD 12153 recgt1i 12192 recreclt 12194 ledivp1i 12220 nngt0 12324 nnrecgt0 12336 elnnnn0c 12598 elnnz1 12669 recnz 12718 uz3m2nn 12956 ledivge1le 13128 xrub 13374 1mod 13954 expubnd 14227 expnbnd 14281 expnlbnd 14282 hashgt23el 14473 resqrex 15299 sin02gt0 16240 oddge22np1 16397 dvdsnprmd 16737 prmlem1 17155 prmlem2 17167 lsmss2 19709 ovolicopnf 25578 voliunlem3 25606 volsup 25610 volivth 25661 itg2seq 25797 itg2monolem2 25806 reeff1olem 26508 sinq12gt0 26567 logdivlti 26680 logdivlt 26681 efexple 27343 gausslemma2dlem4 27431 axlowdimlem16 28990 axlowdimlem17 28991 axlowdim 28994 rusgr1vtx 29624 dmdbr2 32335 dfon2lem3 35749 dfon2lem7 35753 nn0prpwlem 36288 bj-resta 37062 tan2h 37572 mblfinlem4 37620 m1mod0mod1 47243 iccpartgt 47301 gbegt5 47635 gbowgt5 47636 sbgoldbalt 47655 sgoldbeven3prm 47657 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 evengpoap3 47673 nnsum4primesevenALTV 47675 m1modmmod 48255 difmodm1lt 48256 regt1loggt0 48270 rege1logbrege0 48292 rege1logbzge0 48293 |
Copyright terms: Public domain | W3C validator |