| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 695 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mp2ani 698 frpoind 6318 ordelinel 6438 dif20el 8472 domunfican 9279 frind 9710 mulgt1OLD 12048 recgt1i 12087 recreclt 12089 ledivp1i 12115 nngt0 12224 nnrecgt0 12236 elnnnn0c 12494 elnnz1 12566 recnz 12616 uz3m2nn 12860 ledivge1le 13031 xrub 13279 1mod 13872 expubnd 14150 expnbnd 14204 expnlbnd 14205 hashgt23el 14396 resqrex 15223 sin02gt0 16167 oddge22np1 16326 dvdsnprmd 16667 prmlem1 17085 prmlem2 17097 lsmss2 19604 ovolicopnf 25432 voliunlem3 25460 volsup 25464 volivth 25515 itg2seq 25650 itg2monolem2 25659 reeff1olem 26363 sinq12gt0 26423 logdivlti 26536 logdivlt 26537 efexple 27199 gausslemma2dlem4 27287 axlowdimlem16 28891 axlowdimlem17 28892 axlowdim 28895 rusgr1vtx 29523 dmdbr2 32239 dfon2lem3 35780 dfon2lem7 35784 nn0prpwlem 36317 bj-resta 37091 tan2h 37613 mblfinlem4 37661 m1mod0mod1 47359 m1modmmod 47363 iccpartgt 47432 gbegt5 47766 gbowgt5 47767 sbgoldbalt 47786 sgoldbeven3prm 47788 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 evengpoap3 47804 nnsum4primesevenALTV 47806 regt1loggt0 48529 rege1logbrege0 48551 rege1logbzge0 48552 |
| Copyright terms: Public domain | W3C validator |