![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 695 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mp2ani 698 frpoind 6364 wfiOLD 6373 ordelinel 6486 dif20el 8541 domunfican 9358 frind 9787 mulgt1OLD 12123 recgt1i 12162 recreclt 12164 ledivp1i 12190 nngt0 12294 nnrecgt0 12306 elnnnn0c 12568 elnnz1 12640 recnz 12690 uz3m2nn 12930 ledivge1le 13103 xrub 13350 1mod 13939 expubnd 14213 expnbnd 14267 expnlbnd 14268 hashgt23el 14459 resqrex 15285 sin02gt0 16224 oddge22np1 16382 dvdsnprmd 16723 prmlem1 17141 prmlem2 17153 lsmss2 19699 ovolicopnf 25572 voliunlem3 25600 volsup 25604 volivth 25655 itg2seq 25791 itg2monolem2 25800 reeff1olem 26504 sinq12gt0 26563 logdivlti 26676 logdivlt 26677 efexple 27339 gausslemma2dlem4 27427 axlowdimlem16 28986 axlowdimlem17 28987 axlowdim 28990 rusgr1vtx 29620 dmdbr2 32331 dfon2lem3 35766 dfon2lem7 35770 nn0prpwlem 36304 bj-resta 37078 tan2h 37598 mblfinlem4 37646 m1mod0mod1 47293 iccpartgt 47351 gbegt5 47685 gbowgt5 47686 sbgoldbalt 47705 sgoldbeven3prm 47707 nnsum4primesodd 47720 nnsum4primesoddALTV 47721 evengpoap3 47723 nnsum4primesevenALTV 47725 m1modmmod 48370 difmodm1lt 48371 regt1loggt0 48385 rege1logbrege0 48407 rege1logbzge0 48408 |
Copyright terms: Public domain | W3C validator |