| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 695 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mp2ani 698 frpoind 6315 ordelinel 6435 dif20el 8469 domunfican 9272 frind 9703 mulgt1OLD 12041 recgt1i 12080 recreclt 12082 ledivp1i 12108 nngt0 12217 nnrecgt0 12229 elnnnn0c 12487 elnnz1 12559 recnz 12609 uz3m2nn 12853 ledivge1le 13024 xrub 13272 1mod 13865 expubnd 14143 expnbnd 14197 expnlbnd 14198 hashgt23el 14389 resqrex 15216 sin02gt0 16160 oddge22np1 16319 dvdsnprmd 16660 prmlem1 17078 prmlem2 17090 lsmss2 19597 ovolicopnf 25425 voliunlem3 25453 volsup 25457 volivth 25508 itg2seq 25643 itg2monolem2 25652 reeff1olem 26356 sinq12gt0 26416 logdivlti 26529 logdivlt 26530 efexple 27192 gausslemma2dlem4 27280 axlowdimlem16 28884 axlowdimlem17 28885 axlowdim 28888 rusgr1vtx 29516 dmdbr2 32232 dfon2lem3 35773 dfon2lem7 35777 nn0prpwlem 36310 bj-resta 37084 tan2h 37606 mblfinlem4 37654 m1mod0mod1 47355 m1modmmod 47359 iccpartgt 47428 gbegt5 47762 gbowgt5 47763 sbgoldbalt 47782 sgoldbeven3prm 47784 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 evengpoap3 47800 nnsum4primesevenALTV 47802 regt1loggt0 48525 rege1logbrege0 48547 rege1logbzge0 48548 |
| Copyright terms: Public domain | W3C validator |