![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 688 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: mp2ani 691 wfi 5954 ordelinel 6062 dif20el 7853 domunfican 8503 mulgt1 11213 recgt1i 11251 recreclt 11253 ledivp1i 11280 nngt0 11384 nnrecgt0 11395 elnnnn0c 11666 elnnz1 11732 recnz 11781 uz3m2nn 12014 ledivge1le 12186 xrub 12431 1mod 12998 expubnd 13216 expnbnd 13288 expnlbnd 13289 pfx2 14069 resqrex 14369 sin02gt0 15295 oddge22np1 15448 dvdsnprmd 15776 prmlem1 16181 prmlem2 16193 lsmss2 18433 ovolicopnf 23691 voliunlem3 23719 volsup 23723 volivth 23774 itg2seq 23909 itg2monolem2 23918 reeff1olem 24600 sinq12gt0 24660 logdivlti 24766 logdivlt 24767 efexple 25420 gausslemma2dlem4 25508 axlowdimlem16 26257 axlowdimlem17 26258 axlowdim 26261 rusgr1vtx 26887 dmdbr2 29718 dfon2lem3 32229 dfon2lem7 32233 frpoind 32280 frind 32283 nn0prpwlem 32856 bj-resta 33573 tan2h 33945 mblfinlem4 33994 m1mod0mod1 42228 iccpartgt 42252 gbegt5 42480 gbowgt5 42481 sbgoldbalt 42500 sgoldbeven3prm 42502 nnsum4primesodd 42515 nnsum4primesoddALTV 42516 evengpoap3 42518 nnsum4primesevenALTV 42520 m1modmmod 43164 difmodm1lt 43165 regt1loggt0 43178 rege1logbrege0 43200 rege1logbzge0 43201 |
Copyright terms: Public domain | W3C validator |