| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 695 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mp2ani 698 frpoind 6294 ordelinel 6414 dif20el 8426 domunfican 9213 frind 9650 mulgt1OLD 11987 recgt1i 12026 recreclt 12028 ledivp1i 12054 nngt0 12163 nnrecgt0 12175 elnnnn0c 12433 elnnz1 12504 recnz 12554 uz3m2nn 12794 ledivge1le 12965 xrub 13213 1mod 13809 expubnd 14087 expnbnd 14141 expnlbnd 14142 hashgt23el 14333 resqrex 15159 sin02gt0 16103 oddge22np1 16262 dvdsnprmd 16603 prmlem1 17021 prmlem2 17033 lsmss2 19581 ovolicopnf 25453 voliunlem3 25481 volsup 25485 volivth 25536 itg2seq 25671 itg2monolem2 25680 reeff1olem 26384 sinq12gt0 26444 logdivlti 26557 logdivlt 26558 efexple 27220 gausslemma2dlem4 27308 axlowdimlem16 28937 axlowdimlem17 28938 axlowdim 28941 rusgr1vtx 29569 dmdbr2 32285 dfon2lem3 35848 dfon2lem7 35852 nn0prpwlem 36387 bj-resta 37161 tan2h 37672 mblfinlem4 37720 m1mod0mod1 47478 m1modmmod 47482 iccpartgt 47551 gbegt5 47885 gbowgt5 47886 sbgoldbalt 47905 sgoldbeven3prm 47907 nnsum4primesodd 47920 nnsum4primesoddALTV 47921 evengpoap3 47923 nnsum4primesevenALTV 47925 regt1loggt0 48661 rege1logbrege0 48683 rege1logbzge0 48684 |
| Copyright terms: Public domain | W3C validator |