| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpani.1 | ⊢ 𝜓 |
| mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpani.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpand 695 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mp2ani 698 frpoind 6331 wfiOLD 6340 ordelinel 6455 dif20el 8517 domunfican 9333 frind 9764 mulgt1OLD 12100 recgt1i 12139 recreclt 12141 ledivp1i 12167 nngt0 12271 nnrecgt0 12283 elnnnn0c 12546 elnnz1 12618 recnz 12668 uz3m2nn 12907 ledivge1le 13080 xrub 13328 1mod 13920 expubnd 14196 expnbnd 14250 expnlbnd 14251 hashgt23el 14442 resqrex 15269 sin02gt0 16210 oddge22np1 16368 dvdsnprmd 16709 prmlem1 17127 prmlem2 17139 lsmss2 19648 ovolicopnf 25477 voliunlem3 25505 volsup 25509 volivth 25560 itg2seq 25695 itg2monolem2 25704 reeff1olem 26408 sinq12gt0 26468 logdivlti 26581 logdivlt 26582 efexple 27244 gausslemma2dlem4 27332 axlowdimlem16 28936 axlowdimlem17 28937 axlowdim 28940 rusgr1vtx 29568 dmdbr2 32284 dfon2lem3 35803 dfon2lem7 35807 nn0prpwlem 36340 bj-resta 37114 tan2h 37636 mblfinlem4 37684 m1mod0mod1 47383 iccpartgt 47441 gbegt5 47775 gbowgt5 47776 sbgoldbalt 47795 sgoldbeven3prm 47797 nnsum4primesodd 47810 nnsum4primesoddALTV 47811 evengpoap3 47813 nnsum4primesevenALTV 47815 m1modmmod 48501 difmodm1lt 48502 regt1loggt0 48516 rege1logbrege0 48538 rege1logbzge0 48539 |
| Copyright terms: Public domain | W3C validator |