Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpani | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpani.1 | ⊢ 𝜓 |
mpani.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpani | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpani.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpani.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 692 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mp2ani 695 frpoind 6245 wfiOLD 6254 ordelinel 6364 dif20el 8335 domunfican 9087 frind 9508 mulgt1 11834 recgt1i 11872 recreclt 11874 ledivp1i 11900 nngt0 12004 nnrecgt0 12016 elnnnn0c 12278 elnnz1 12346 recnz 12395 uz3m2nn 12631 ledivge1le 12801 xrub 13046 1mod 13623 expubnd 13895 expnbnd 13947 expnlbnd 13948 hashgt23el 14139 resqrex 14962 sin02gt0 15901 oddge22np1 16058 dvdsnprmd 16395 prmlem1 16809 prmlem2 16821 lsmss2 19273 ovolicopnf 24688 voliunlem3 24716 volsup 24720 volivth 24771 itg2seq 24907 itg2monolem2 24916 reeff1olem 25605 sinq12gt0 25664 logdivlti 25775 logdivlt 25776 efexple 26429 gausslemma2dlem4 26517 axlowdimlem16 27325 axlowdimlem17 27326 axlowdim 27329 rusgr1vtx 27955 dmdbr2 30665 dfon2lem3 33761 dfon2lem7 33765 nn0prpwlem 34511 bj-resta 35267 tan2h 35769 mblfinlem4 35817 m1mod0mod1 44821 iccpartgt 44879 gbegt5 45213 gbowgt5 45214 sbgoldbalt 45233 sgoldbeven3prm 45235 nnsum4primesodd 45248 nnsum4primesoddALTV 45249 evengpoap3 45251 nnsum4primesevenALTV 45253 m1modmmod 45867 difmodm1lt 45868 regt1loggt0 45882 rege1logbrege0 45904 rege1logbzge0 45905 |
Copyright terms: Public domain | W3C validator |