Step | Hyp | Ref
| Expression |
1 | | dfac3 9808 |
. 2
⊢
(CHOICE ↔ ∀𝑠∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
2 | | vex 3426 |
. . . . . . 7
⊢ 𝑓 ∈ V |
3 | 2 | rnex 7733 |
. . . . . 6
⊢ ran 𝑓 ∈ V |
4 | | raleq 3333 |
. . . . . . 7
⊢ (𝑠 = ran 𝑓 → (∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) ↔ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡))) |
5 | 4 | exbidv 1925 |
. . . . . 6
⊢ (𝑠 = ran 𝑓 → (∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) ↔ ∃𝑔∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡))) |
6 | 3, 5 | spcv 3534 |
. . . . 5
⊢
(∀𝑠∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) → ∃𝑔∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
7 | | df-nel 3049 |
. . . . . . . . . . . . . . 15
⊢ (∅
∉ ran 𝑓 ↔ ¬
∅ ∈ ran 𝑓) |
8 | 7 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (∅
∉ ran 𝑓 → ¬
∅ ∈ ran 𝑓) |
9 | 8 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ 𝑥 ∈ dom 𝑓) → ¬ ∅ ∈ ran 𝑓) |
10 | | fvelrn 6936 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑓 ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ ran 𝑓) |
11 | 10 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ ran 𝑓) |
12 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑥) = ∅ → ((𝑓‘𝑥) ∈ ran 𝑓 ↔ ∅ ∈ ran 𝑓)) |
13 | 11, 12 | syl5ibcom 244 |
. . . . . . . . . . . . . 14
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ 𝑥 ∈ dom 𝑓) → ((𝑓‘𝑥) = ∅ → ∅ ∈ ran 𝑓)) |
14 | 13 | necon3bd 2956 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ 𝑥 ∈ dom 𝑓) → (¬ ∅ ∈ ran 𝑓 → (𝑓‘𝑥) ≠ ∅)) |
15 | 9, 14 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ≠ ∅) |
16 | 15 | adantlr 711 |
. . . . . . . . . . 11
⊢ ((((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ≠ ∅) |
17 | | neeq1 3005 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑓‘𝑥) → (𝑡 ≠ ∅ ↔ (𝑓‘𝑥) ≠ ∅)) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝑓‘𝑥) → (𝑔‘𝑡) = (𝑔‘(𝑓‘𝑥))) |
19 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝑓‘𝑥) → 𝑡 = (𝑓‘𝑥)) |
20 | 18, 19 | eleq12d 2833 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑓‘𝑥) → ((𝑔‘𝑡) ∈ 𝑡 ↔ (𝑔‘(𝑓‘𝑥)) ∈ (𝑓‘𝑥))) |
21 | 17, 20 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑓‘𝑥) → ((𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) ↔ ((𝑓‘𝑥) ≠ ∅ → (𝑔‘(𝑓‘𝑥)) ∈ (𝑓‘𝑥)))) |
22 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
23 | 10 | ad4ant14 748 |
. . . . . . . . . . . 12
⊢ ((((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ ran 𝑓) |
24 | 21, 22, 23 | rspcdva 3554 |
. . . . . . . . . . 11
⊢ ((((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → ((𝑓‘𝑥) ≠ ∅ → (𝑔‘(𝑓‘𝑥)) ∈ (𝑓‘𝑥))) |
25 | 16, 24 | mpd 15 |
. . . . . . . . . 10
⊢ ((((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → (𝑔‘(𝑓‘𝑥)) ∈ (𝑓‘𝑥)) |
26 | 25 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) → ∀𝑥 ∈ dom 𝑓(𝑔‘(𝑓‘𝑥)) ∈ (𝑓‘𝑥)) |
27 | 2 | dmex 7732 |
. . . . . . . . . 10
⊢ dom 𝑓 ∈ V |
28 | | mptelixpg 8681 |
. . . . . . . . . 10
⊢ (dom
𝑓 ∈ V → ((𝑥 ∈ dom 𝑓 ↦ (𝑔‘(𝑓‘𝑥))) ∈ X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ↔ ∀𝑥 ∈ dom 𝑓(𝑔‘(𝑓‘𝑥)) ∈ (𝑓‘𝑥))) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom 𝑓 ↦ (𝑔‘(𝑓‘𝑥))) ∈ X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ↔ ∀𝑥 ∈ dom 𝑓(𝑔‘(𝑓‘𝑥)) ∈ (𝑓‘𝑥)) |
30 | 26, 29 | sylibr 233 |
. . . . . . . 8
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) → (𝑥 ∈ dom 𝑓 ↦ (𝑔‘(𝑓‘𝑥))) ∈ X𝑥 ∈ dom 𝑓(𝑓‘𝑥)) |
31 | 30 | ne0d 4266 |
. . . . . . 7
⊢ (((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅) |
32 | 31 | ex 412 |
. . . . . 6
⊢ ((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) → (∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) |
33 | 32 | exlimdv 1937 |
. . . . 5
⊢ ((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) → (∃𝑔∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) |
34 | 6, 33 | syl5com 31 |
. . . 4
⊢
(∀𝑠∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) → ((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) |
35 | 34 | alrimiv 1931 |
. . 3
⊢
(∀𝑠∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) → ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) |
36 | | fnresi 6545 |
. . . . . . 7
⊢ ( I
↾ (𝑠 ∖
{∅})) Fn (𝑠 ∖
{∅}) |
37 | | fnfun 6517 |
. . . . . . 7
⊢ (( I
↾ (𝑠 ∖
{∅})) Fn (𝑠 ∖
{∅}) → Fun ( I ↾ (𝑠 ∖ {∅}))) |
38 | 36, 37 | ax-mp 5 |
. . . . . 6
⊢ Fun ( I
↾ (𝑠 ∖
{∅})) |
39 | | neldifsn 4722 |
. . . . . 6
⊢ ¬
∅ ∈ (𝑠 ∖
{∅}) |
40 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
41 | 40 | difexi 5247 |
. . . . . . . 8
⊢ (𝑠 ∖ {∅}) ∈
V |
42 | | resiexg 7735 |
. . . . . . . 8
⊢ ((𝑠 ∖ {∅}) ∈ V
→ ( I ↾ (𝑠
∖ {∅})) ∈ V) |
43 | 41, 42 | ax-mp 5 |
. . . . . . 7
⊢ ( I
↾ (𝑠 ∖
{∅})) ∈ V |
44 | | funeq 6438 |
. . . . . . . . 9
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (Fun
𝑓 ↔ Fun ( I ↾
(𝑠 ∖
{∅})))) |
45 | | rneq 5834 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → ran
𝑓 = ran ( I ↾ (𝑠 ∖
{∅}))) |
46 | | rnresi 5972 |
. . . . . . . . . . . . 13
⊢ ran ( I
↾ (𝑠 ∖
{∅})) = (𝑠 ∖
{∅}) |
47 | 45, 46 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → ran
𝑓 = (𝑠 ∖ {∅})) |
48 | 47 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
(∅ ∈ ran 𝑓
↔ ∅ ∈ (𝑠
∖ {∅}))) |
49 | 48 | notbid 317 |
. . . . . . . . . 10
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
(¬ ∅ ∈ ran 𝑓
↔ ¬ ∅ ∈ (𝑠 ∖ {∅}))) |
50 | 7, 49 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
(∅ ∉ ran 𝑓
↔ ¬ ∅ ∈ (𝑠 ∖ {∅}))) |
51 | 44, 50 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
((Fun 𝑓 ∧ ∅
∉ ran 𝑓) ↔ (Fun
( I ↾ (𝑠 ∖
{∅})) ∧ ¬ ∅ ∈ (𝑠 ∖ {∅})))) |
52 | | dmeq 5801 |
. . . . . . . . . . . 12
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → dom
𝑓 = dom ( I ↾ (𝑠 ∖
{∅}))) |
53 | | dmresi 5950 |
. . . . . . . . . . . 12
⊢ dom ( I
↾ (𝑠 ∖
{∅})) = (𝑠 ∖
{∅}) |
54 | 52, 53 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → dom
𝑓 = (𝑠 ∖ {∅})) |
55 | 54 | ixpeq1d 8655 |
. . . . . . . . . 10
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
X𝑥
∈ dom 𝑓(𝑓‘𝑥) = X𝑥 ∈ (𝑠 ∖ {∅})(𝑓‘𝑥)) |
56 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
(𝑓‘𝑥) = (( I ↾ (𝑠 ∖ {∅}))‘𝑥)) |
57 | | fvresi 7027 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑠 ∖ {∅}) → (( I ↾
(𝑠 ∖
{∅}))‘𝑥) =
𝑥) |
58 | 56, 57 | sylan9eq 2799 |
. . . . . . . . . . 11
⊢ ((𝑓 = ( I ↾ (𝑠 ∖ {∅})) ∧ 𝑥 ∈ (𝑠 ∖ {∅})) → (𝑓‘𝑥) = 𝑥) |
59 | 58 | ixpeq2dva 8658 |
. . . . . . . . . 10
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
X𝑥
∈ (𝑠 ∖
{∅})(𝑓‘𝑥) = X𝑥 ∈
(𝑠 ∖ {∅})𝑥) |
60 | 55, 59 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
X𝑥
∈ dom 𝑓(𝑓‘𝑥) = X𝑥 ∈ (𝑠 ∖ {∅})𝑥) |
61 | 60 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
(X𝑥
∈ dom 𝑓(𝑓‘𝑥) ≠ ∅ ↔ X𝑥 ∈
(𝑠 ∖ {∅})𝑥 ≠ ∅)) |
62 | 51, 61 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ (𝑠 ∖ {∅})) →
(((Fun 𝑓 ∧ ∅
∉ ran 𝑓) → X𝑥 ∈
dom 𝑓(𝑓‘𝑥) ≠ ∅) ↔ ((Fun ( I ↾
(𝑠 ∖ {∅}))
∧ ¬ ∅ ∈ (𝑠 ∖ {∅})) → X𝑥 ∈
(𝑠 ∖ {∅})𝑥 ≠
∅))) |
63 | 43, 62 | spcv 3534 |
. . . . . 6
⊢
(∀𝑓((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) → X𝑥 ∈
dom 𝑓(𝑓‘𝑥) ≠ ∅) → ((Fun ( I ↾
(𝑠 ∖ {∅}))
∧ ¬ ∅ ∈ (𝑠 ∖ {∅})) → X𝑥 ∈
(𝑠 ∖ {∅})𝑥 ≠ ∅)) |
64 | 38, 39, 63 | mp2ani 694 |
. . . . 5
⊢
(∀𝑓((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) → X𝑥 ∈
dom 𝑓(𝑓‘𝑥) ≠ ∅) → X𝑥 ∈
(𝑠 ∖ {∅})𝑥 ≠ ∅) |
65 | | n0 4277 |
. . . . . 6
⊢ (X𝑥 ∈
(𝑠 ∖ {∅})𝑥 ≠ ∅ ↔
∃𝑔 𝑔 ∈ X𝑥 ∈ (𝑠 ∖ {∅})𝑥) |
66 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
67 | 66 | elixp 8650 |
. . . . . . . 8
⊢ (𝑔 ∈ X𝑥 ∈
(𝑠 ∖ {∅})𝑥 ↔ (𝑔 Fn (𝑠 ∖ {∅}) ∧ ∀𝑥 ∈ (𝑠 ∖ {∅})(𝑔‘𝑥) ∈ 𝑥)) |
68 | | eldifsn 4717 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑠 ∖ {∅}) ↔ (𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅)) |
69 | 68 | imbi1i 349 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (𝑠 ∖ {∅}) → (𝑔‘𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅) → (𝑔‘𝑥) ∈ 𝑥)) |
70 | | impexp 450 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅) → (𝑔‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝑠 → (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
71 | 69, 70 | bitri 274 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑠 ∖ {∅}) → (𝑔‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝑠 → (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
72 | 71 | ralbii2 3088 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
(𝑠 ∖ {∅})(𝑔‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝑠 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) |
73 | | neeq1 3005 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑥 ≠ ∅ ↔ 𝑡 ≠ ∅)) |
74 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → (𝑔‘𝑥) = (𝑔‘𝑡)) |
75 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → 𝑥 = 𝑡) |
76 | 74, 75 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → ((𝑔‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑡) ∈ 𝑡)) |
77 | 73, 76 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) ↔ (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡))) |
78 | 77 | cbvralvw 3372 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑠 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) ↔ ∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
79 | 72, 78 | bitri 274 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝑠 ∖ {∅})(𝑔‘𝑥) ∈ 𝑥 ↔ ∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
80 | 79 | biimpi 215 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(𝑠 ∖ {∅})(𝑔‘𝑥) ∈ 𝑥 → ∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
81 | 67, 80 | simplbiim 504 |
. . . . . . 7
⊢ (𝑔 ∈ X𝑥 ∈
(𝑠 ∖ {∅})𝑥 → ∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
82 | 81 | eximi 1838 |
. . . . . 6
⊢
(∃𝑔 𝑔 ∈ X𝑥 ∈
(𝑠 ∖ {∅})𝑥 → ∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
83 | 65, 82 | sylbi 216 |
. . . . 5
⊢ (X𝑥 ∈
(𝑠 ∖ {∅})𝑥 ≠ ∅ →
∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
84 | 64, 83 | syl 17 |
. . . 4
⊢
(∀𝑓((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) → X𝑥 ∈
dom 𝑓(𝑓‘𝑥) ≠ ∅) → ∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
85 | 84 | alrimiv 1931 |
. . 3
⊢
(∀𝑓((Fun
𝑓 ∧ ∅ ∉ ran
𝑓) → X𝑥 ∈
dom 𝑓(𝑓‘𝑥) ≠ ∅) → ∀𝑠∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡)) |
86 | 35, 85 | impbii 208 |
. 2
⊢
(∀𝑠∃𝑔∀𝑡 ∈ 𝑠 (𝑡 ≠ ∅ → (𝑔‘𝑡) ∈ 𝑡) ↔ ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) |
87 | 1, 86 | bitri 274 |
1
⊢
(CHOICE ↔ ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) |