MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac9 Structured version   Visualization version   GIF version

Theorem dfac9 9160
Description: Equivalence of the axiom of choice with a statement related to ac9 9507; definition AC3 of [Schechter] p. 139. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
dfac9 (CHOICE ↔ ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅))
Distinct variable group:   𝑥,𝑓

Proof of Theorem dfac9
Dummy variables 𝑔 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 9144 . 2 (CHOICE ↔ ∀𝑠𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
2 vex 3354 . . . . . . 7 𝑓 ∈ V
32rnex 7247 . . . . . 6 ran 𝑓 ∈ V
4 raleq 3287 . . . . . . 7 (𝑠 = ran 𝑓 → (∀𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) ↔ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)))
54exbidv 2002 . . . . . 6 (𝑠 = ran 𝑓 → (∃𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) ↔ ∃𝑔𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)))
63, 5spcv 3450 . . . . 5 (∀𝑠𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) → ∃𝑔𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
7 df-nel 3047 . . . . . . . . . . . . . . 15 (∅ ∉ ran 𝑓 ↔ ¬ ∅ ∈ ran 𝑓)
87biimpi 206 . . . . . . . . . . . . . 14 (∅ ∉ ran 𝑓 → ¬ ∅ ∈ ran 𝑓)
98ad2antlr 706 . . . . . . . . . . . . 13 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ 𝑥 ∈ dom 𝑓) → ¬ ∅ ∈ ran 𝑓)
10 fvelrn 6495 . . . . . . . . . . . . . . . 16 ((Fun 𝑓𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ ran 𝑓)
1110adantlr 694 . . . . . . . . . . . . . . 15 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ ran 𝑓)
12 eleq1 2838 . . . . . . . . . . . . . . 15 ((𝑓𝑥) = ∅ → ((𝑓𝑥) ∈ ran 𝑓 ↔ ∅ ∈ ran 𝑓))
1311, 12syl5ibcom 235 . . . . . . . . . . . . . 14 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ 𝑥 ∈ dom 𝑓) → ((𝑓𝑥) = ∅ → ∅ ∈ ran 𝑓))
1413necon3bd 2957 . . . . . . . . . . . . 13 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ 𝑥 ∈ dom 𝑓) → (¬ ∅ ∈ ran 𝑓 → (𝑓𝑥) ≠ ∅))
159, 14mpd 15 . . . . . . . . . . . 12 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ≠ ∅)
1615adantlr 694 . . . . . . . . . . 11 ((((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ≠ ∅)
17 neeq1 3005 . . . . . . . . . . . . 13 (𝑡 = (𝑓𝑥) → (𝑡 ≠ ∅ ↔ (𝑓𝑥) ≠ ∅))
18 fveq2 6332 . . . . . . . . . . . . . 14 (𝑡 = (𝑓𝑥) → (𝑔𝑡) = (𝑔‘(𝑓𝑥)))
19 id 22 . . . . . . . . . . . . . 14 (𝑡 = (𝑓𝑥) → 𝑡 = (𝑓𝑥))
2018, 19eleq12d 2844 . . . . . . . . . . . . 13 (𝑡 = (𝑓𝑥) → ((𝑔𝑡) ∈ 𝑡 ↔ (𝑔‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2117, 20imbi12d 333 . . . . . . . . . . . 12 (𝑡 = (𝑓𝑥) → ((𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) ↔ ((𝑓𝑥) ≠ ∅ → (𝑔‘(𝑓𝑥)) ∈ (𝑓𝑥))))
22 simplr 752 . . . . . . . . . . . 12 ((((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
23 simpll 750 . . . . . . . . . . . . 13 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) → Fun 𝑓)
2423, 10sylan 569 . . . . . . . . . . . 12 ((((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ ran 𝑓)
2521, 22, 24rspcdva 3466 . . . . . . . . . . 11 ((((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → ((𝑓𝑥) ≠ ∅ → (𝑔‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2616, 25mpd 15 . . . . . . . . . 10 ((((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) ∧ 𝑥 ∈ dom 𝑓) → (𝑔‘(𝑓𝑥)) ∈ (𝑓𝑥))
2726ralrimiva 3115 . . . . . . . . 9 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) → ∀𝑥 ∈ dom 𝑓(𝑔‘(𝑓𝑥)) ∈ (𝑓𝑥))
282dmex 7246 . . . . . . . . . 10 dom 𝑓 ∈ V
29 mptelixpg 8099 . . . . . . . . . 10 (dom 𝑓 ∈ V → ((𝑥 ∈ dom 𝑓 ↦ (𝑔‘(𝑓𝑥))) ∈ X𝑥 ∈ dom 𝑓(𝑓𝑥) ↔ ∀𝑥 ∈ dom 𝑓(𝑔‘(𝑓𝑥)) ∈ (𝑓𝑥)))
3028, 29ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ dom 𝑓 ↦ (𝑔‘(𝑓𝑥))) ∈ X𝑥 ∈ dom 𝑓(𝑓𝑥) ↔ ∀𝑥 ∈ dom 𝑓(𝑔‘(𝑓𝑥)) ∈ (𝑓𝑥))
3127, 30sylibr 224 . . . . . . . 8 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) → (𝑥 ∈ dom 𝑓 ↦ (𝑔‘(𝑓𝑥))) ∈ X𝑥 ∈ dom 𝑓(𝑓𝑥))
32 ne0i 4069 . . . . . . . 8 ((𝑥 ∈ dom 𝑓 ↦ (𝑔‘(𝑓𝑥))) ∈ X𝑥 ∈ dom 𝑓(𝑓𝑥) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅)
3331, 32syl 17 . . . . . . 7 (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ∧ ∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅)
3433ex 397 . . . . . 6 ((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → (∀𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅))
3534exlimdv 2013 . . . . 5 ((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → (∃𝑔𝑡 ∈ ran 𝑓(𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅))
366, 35syl5com 31 . . . 4 (∀𝑠𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) → ((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅))
3736alrimiv 2007 . . 3 (∀𝑠𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) → ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅))
38 fnresi 6148 . . . . . . 7 ( I ↾ (𝑠 ∖ {∅})) Fn (𝑠 ∖ {∅})
39 fnfun 6128 . . . . . . 7 (( I ↾ (𝑠 ∖ {∅})) Fn (𝑠 ∖ {∅}) → Fun ( I ↾ (𝑠 ∖ {∅})))
4038, 39ax-mp 5 . . . . . 6 Fun ( I ↾ (𝑠 ∖ {∅}))
41 neldifsn 4458 . . . . . 6 ¬ ∅ ∈ (𝑠 ∖ {∅})
42 vex 3354 . . . . . . . . 9 𝑠 ∈ V
43 difexg 4942 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∖ {∅}) ∈ V)
4442, 43ax-mp 5 . . . . . . . 8 (𝑠 ∖ {∅}) ∈ V
45 resiexg 7249 . . . . . . . 8 ((𝑠 ∖ {∅}) ∈ V → ( I ↾ (𝑠 ∖ {∅})) ∈ V)
4644, 45ax-mp 5 . . . . . . 7 ( I ↾ (𝑠 ∖ {∅})) ∈ V
47 funeq 6051 . . . . . . . . 9 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (Fun 𝑓 ↔ Fun ( I ↾ (𝑠 ∖ {∅}))))
48 rneq 5489 . . . . . . . . . . . . 13 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → ran 𝑓 = ran ( I ↾ (𝑠 ∖ {∅})))
49 rnresi 5620 . . . . . . . . . . . . 13 ran ( I ↾ (𝑠 ∖ {∅})) = (𝑠 ∖ {∅})
5048, 49syl6eq 2821 . . . . . . . . . . . 12 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → ran 𝑓 = (𝑠 ∖ {∅}))
5150eleq2d 2836 . . . . . . . . . . 11 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (∅ ∈ ran 𝑓 ↔ ∅ ∈ (𝑠 ∖ {∅})))
5251notbid 307 . . . . . . . . . 10 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (¬ ∅ ∈ ran 𝑓 ↔ ¬ ∅ ∈ (𝑠 ∖ {∅})))
537, 52syl5bb 272 . . . . . . . . 9 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (∅ ∉ ran 𝑓 ↔ ¬ ∅ ∈ (𝑠 ∖ {∅})))
5447, 53anbi12d 616 . . . . . . . 8 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → ((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) ↔ (Fun ( I ↾ (𝑠 ∖ {∅})) ∧ ¬ ∅ ∈ (𝑠 ∖ {∅}))))
55 dmeq 5462 . . . . . . . . . . . 12 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → dom 𝑓 = dom ( I ↾ (𝑠 ∖ {∅})))
56 dmresi 5598 . . . . . . . . . . . 12 dom ( I ↾ (𝑠 ∖ {∅})) = (𝑠 ∖ {∅})
5755, 56syl6eq 2821 . . . . . . . . . . 11 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → dom 𝑓 = (𝑠 ∖ {∅}))
5857ixpeq1d 8074 . . . . . . . . . 10 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → X𝑥 ∈ dom 𝑓(𝑓𝑥) = X𝑥 ∈ (𝑠 ∖ {∅})(𝑓𝑥))
59 fveq1 6331 . . . . . . . . . . . 12 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (𝑓𝑥) = (( I ↾ (𝑠 ∖ {∅}))‘𝑥))
60 fvresi 6583 . . . . . . . . . . . 12 (𝑥 ∈ (𝑠 ∖ {∅}) → (( I ↾ (𝑠 ∖ {∅}))‘𝑥) = 𝑥)
6159, 60sylan9eq 2825 . . . . . . . . . . 11 ((𝑓 = ( I ↾ (𝑠 ∖ {∅})) ∧ 𝑥 ∈ (𝑠 ∖ {∅})) → (𝑓𝑥) = 𝑥)
6261ixpeq2dva 8077 . . . . . . . . . 10 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → X𝑥 ∈ (𝑠 ∖ {∅})(𝑓𝑥) = X𝑥 ∈ (𝑠 ∖ {∅})𝑥)
6358, 62eqtrd 2805 . . . . . . . . 9 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → X𝑥 ∈ dom 𝑓(𝑓𝑥) = X𝑥 ∈ (𝑠 ∖ {∅})𝑥)
6463neeq1d 3002 . . . . . . . 8 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅ ↔ X𝑥 ∈ (𝑠 ∖ {∅})𝑥 ≠ ∅))
6554, 64imbi12d 333 . . . . . . 7 (𝑓 = ( I ↾ (𝑠 ∖ {∅})) → (((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅) ↔ ((Fun ( I ↾ (𝑠 ∖ {∅})) ∧ ¬ ∅ ∈ (𝑠 ∖ {∅})) → X𝑥 ∈ (𝑠 ∖ {∅})𝑥 ≠ ∅)))
6646, 65spcv 3450 . . . . . 6 (∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅) → ((Fun ( I ↾ (𝑠 ∖ {∅})) ∧ ¬ ∅ ∈ (𝑠 ∖ {∅})) → X𝑥 ∈ (𝑠 ∖ {∅})𝑥 ≠ ∅))
6740, 41, 66mp2ani 678 . . . . 5 (∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅) → X𝑥 ∈ (𝑠 ∖ {∅})𝑥 ≠ ∅)
68 n0 4078 . . . . . 6 (X𝑥 ∈ (𝑠 ∖ {∅})𝑥 ≠ ∅ ↔ ∃𝑔 𝑔X𝑥 ∈ (𝑠 ∖ {∅})𝑥)
69 vex 3354 . . . . . . . . 9 𝑔 ∈ V
7069elixp 8069 . . . . . . . 8 (𝑔X𝑥 ∈ (𝑠 ∖ {∅})𝑥 ↔ (𝑔 Fn (𝑠 ∖ {∅}) ∧ ∀𝑥 ∈ (𝑠 ∖ {∅})(𝑔𝑥) ∈ 𝑥))
71 eldifsn 4453 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑠 ∖ {∅}) ↔ (𝑥𝑠𝑥 ≠ ∅))
7271imbi1i 338 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑠 ∖ {∅}) → (𝑔𝑥) ∈ 𝑥) ↔ ((𝑥𝑠𝑥 ≠ ∅) → (𝑔𝑥) ∈ 𝑥))
73 impexp 437 . . . . . . . . . . . . 13 (((𝑥𝑠𝑥 ≠ ∅) → (𝑔𝑥) ∈ 𝑥) ↔ (𝑥𝑠 → (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)))
7472, 73bitri 264 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑠 ∖ {∅}) → (𝑔𝑥) ∈ 𝑥) ↔ (𝑥𝑠 → (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)))
7574ralbii2 3127 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑠 ∖ {∅})(𝑔𝑥) ∈ 𝑥 ↔ ∀𝑥𝑠 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
76 neeq1 3005 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝑥 ≠ ∅ ↔ 𝑡 ≠ ∅))
77 fveq2 6332 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (𝑔𝑥) = (𝑔𝑡))
78 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑡𝑥 = 𝑡)
7977, 78eleq12d 2844 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → ((𝑔𝑥) ∈ 𝑥 ↔ (𝑔𝑡) ∈ 𝑡))
8076, 79imbi12d 333 . . . . . . . . . . . 12 (𝑥 = 𝑡 → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) ↔ (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡)))
8180cbvralv 3320 . . . . . . . . . . 11 (∀𝑥𝑠 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) ↔ ∀𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8275, 81bitri 264 . . . . . . . . . 10 (∀𝑥 ∈ (𝑠 ∖ {∅})(𝑔𝑥) ∈ 𝑥 ↔ ∀𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8382biimpi 206 . . . . . . . . 9 (∀𝑥 ∈ (𝑠 ∖ {∅})(𝑔𝑥) ∈ 𝑥 → ∀𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8483adantl 467 . . . . . . . 8 ((𝑔 Fn (𝑠 ∖ {∅}) ∧ ∀𝑥 ∈ (𝑠 ∖ {∅})(𝑔𝑥) ∈ 𝑥) → ∀𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8570, 84sylbi 207 . . . . . . 7 (𝑔X𝑥 ∈ (𝑠 ∖ {∅})𝑥 → ∀𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8685eximi 1910 . . . . . 6 (∃𝑔 𝑔X𝑥 ∈ (𝑠 ∖ {∅})𝑥 → ∃𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8768, 86sylbi 207 . . . . 5 (X𝑥 ∈ (𝑠 ∖ {∅})𝑥 ≠ ∅ → ∃𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8867, 87syl 17 . . . 4 (∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅) → ∃𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
8988alrimiv 2007 . . 3 (∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅) → ∀𝑠𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡))
9037, 89impbii 199 . 2 (∀𝑠𝑔𝑡𝑠 (𝑡 ≠ ∅ → (𝑔𝑡) ∈ 𝑡) ↔ ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅))
911, 90bitri 264 1 (CHOICE ↔ ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓𝑥) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wex 1852  wcel 2145  wne 2943  wnel 3046  wral 3061  Vcvv 3351  cdif 3720  c0 4063  {csn 4316  cmpt 4863   I cid 5156  dom cdm 5249  ran crn 5250  cres 5251  Fun wfun 6025   Fn wfn 6026  cfv 6031  Xcixp 8062  CHOICEwac 9138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ixp 8063  df-ac 9139
This theorem is referenced by:  dfac14  21642  dfac21  38162
  Copyright terms: Public domain W3C validator