Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  comptiunov2i Structured version   Visualization version   GIF version

Theorem comptiunov2i 39935
Description: The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.)
Hypotheses
Ref Expression
comptiunov2.x 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
comptiunov2.y 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
comptiunov2.z 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
comptiunov2.i 𝐼 ∈ V
comptiunov2.j 𝐽 ∈ V
comptiunov2.k 𝐾 = (𝐼𝐽)
comptiunov2.1 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.2 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.3 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
Assertion
Ref Expression
comptiunov2i (𝑋𝑌) = 𝑍
Distinct variable groups:   𝑖,𝑎,   ,𝑏   ,𝑐   𝐼,𝑎,𝑖   𝑘,𝐼   𝑗,𝑎,𝐽,𝑖   𝐽,𝑏   𝑘,𝐽   𝑘,𝑐,𝐾   𝑋,𝑑   𝑌,𝑑   𝑍,𝑑   𝑎,𝑑,𝑖,𝑗   𝑏,𝑑,𝑗   𝑐,𝑑,𝑘
Allowed substitution hints:   (𝑗,𝑘,𝑑)   𝐼(𝑗,𝑏,𝑐,𝑑)   𝐽(𝑐,𝑑)   𝐾(𝑖,𝑗,𝑎,𝑏,𝑑)   𝑋(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑍(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem comptiunov2i
StepHypRef Expression
1 comptiunov2.x . . . 4 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
21funmpt2 6393 . . 3 Fun 𝑋
3 comptiunov2.y . . . 4 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
43funmpt2 6393 . . 3 Fun 𝑌
5 funco 6394 . . 3 ((Fun 𝑋 ∧ Fun 𝑌) → Fun (𝑋𝑌))
62, 4, 5mp2an 688 . 2 Fun (𝑋𝑌)
7 comptiunov2.z . . 3 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
87funmpt2 6393 . 2 Fun 𝑍
9 ssv 3995 . . . . . . 7 ran 𝑌 ⊆ V
10 comptiunov2.i . . . . . . . . 9 𝐼 ∈ V
11 ovex 7183 . . . . . . . . 9 (𝑎 𝑖) ∈ V
1210, 11iunex 7665 . . . . . . . 8 𝑖𝐼 (𝑎 𝑖) ∈ V
1312, 1dmmpti 6491 . . . . . . 7 dom 𝑋 = V
149, 13sseqtrri 4008 . . . . . 6 ran 𝑌 ⊆ dom 𝑋
15 dmcosseq 5843 . . . . . 6 (ran 𝑌 ⊆ dom 𝑋 → dom (𝑋𝑌) = dom 𝑌)
1614, 15ax-mp 5 . . . . 5 dom (𝑋𝑌) = dom 𝑌
17 comptiunov2.j . . . . . . 7 𝐽 ∈ V
18 ovex 7183 . . . . . . 7 (𝑏 𝑗) ∈ V
1917, 18iunex 7665 . . . . . 6 𝑗𝐽 (𝑏 𝑗) ∈ V
2019, 3dmmpti 6491 . . . . 5 dom 𝑌 = V
2116, 20eqtri 2849 . . . 4 dom (𝑋𝑌) = V
22 comptiunov2.k . . . . . . 7 𝐾 = (𝐼𝐽)
2310, 17unex 7462 . . . . . . 7 (𝐼𝐽) ∈ V
2422, 23eqeltri 2914 . . . . . 6 𝐾 ∈ V
25 ovex 7183 . . . . . 6 (𝑐 𝑘) ∈ V
2624, 25iunex 7665 . . . . 5 𝑘𝐾 (𝑐 𝑘) ∈ V
2726, 7dmmpti 6491 . . . 4 dom 𝑍 = V
2821, 27eqtr4i 2852 . . 3 dom (𝑋𝑌) = dom 𝑍
29 vex 3503 . . . . . . . . 9 𝑑 ∈ V
3029, 20eleqtrri 2917 . . . . . . . 8 𝑑 ∈ dom 𝑌
31 fvco 6758 . . . . . . . 8 ((Fun 𝑌𝑑 ∈ dom 𝑌) → ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑)))
324, 30, 31mp2an 688 . . . . . . 7 ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑))
33 oveq1 7157 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏 𝑗) = (𝑑 𝑗))
3433iuneq2d 4945 . . . . . . . . . 10 (𝑏 = 𝑑 𝑗𝐽 (𝑏 𝑗) = 𝑗𝐽 (𝑑 𝑗))
35 ovex 7183 . . . . . . . . . . 11 (𝑑 𝑗) ∈ V
3617, 35iunex 7665 . . . . . . . . . 10 𝑗𝐽 (𝑑 𝑗) ∈ V
3734, 3, 36fvmpt 6767 . . . . . . . . 9 (𝑑 ∈ V → (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗))
3837elv 3505 . . . . . . . 8 (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗)
3938fveq2i 6672 . . . . . . 7 (𝑋‘(𝑌𝑑)) = (𝑋 𝑗𝐽 (𝑑 𝑗))
40 oveq1 7157 . . . . . . . . . 10 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → (𝑎 𝑖) = ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4140iuneq2d 4945 . . . . . . . . 9 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → 𝑖𝐼 (𝑎 𝑖) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
42 ovex 7183 . . . . . . . . . 10 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4310, 42iunex 7665 . . . . . . . . 9 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4441, 1, 43fvmpt 6767 . . . . . . . 8 ( 𝑗𝐽 (𝑑 𝑗) ∈ V → (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4536, 44ax-mp 5 . . . . . . 7 (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
4632, 39, 453eqtri 2853 . . . . . 6 ((𝑋𝑌)‘𝑑) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
47 oveq1 7157 . . . . . . . . 9 (𝑐 = 𝑑 → (𝑐 𝑘) = (𝑑 𝑘))
4847iuneq2d 4945 . . . . . . . 8 (𝑐 = 𝑑 𝑘𝐾 (𝑐 𝑘) = 𝑘𝐾 (𝑑 𝑘))
49 ovex 7183 . . . . . . . . 9 (𝑑 𝑘) ∈ V
5024, 49iunex 7665 . . . . . . . 8 𝑘𝐾 (𝑑 𝑘) ∈ V
5148, 7, 50fvmpt 6767 . . . . . . 7 (𝑑 ∈ V → (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘))
5251elv 3505 . . . . . 6 (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘)
5346, 52eqeq12i 2841 . . . . 5 (((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
5421, 53raleqbii 3239 . . . 4 (∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ ∀𝑑 ∈ V 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
55 comptiunov2.3 . . . . . . 7 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
56 iunxun 5013 . . . . . . . 8 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) = ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘))
57 comptiunov2.1 . . . . . . . . 9 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
58 comptiunov2.2 . . . . . . . . 9 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
5957, 58unssi 4165 . . . . . . . 8 ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘)) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6056, 59eqsstri 4005 . . . . . . 7 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6155, 60eqssi 3987 . . . . . 6 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
62 iuneq1 4932 . . . . . . 7 (𝐾 = (𝐼𝐽) → 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘))
6322, 62ax-mp 5 . . . . . 6 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
6461, 63eqtr4i 2852 . . . . 5 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘)
6564a1i 11 . . . 4 (𝑑 ∈ V → 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
6654, 65mprgbir 3158 . . 3 𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)
67 eqfunfv 6805 . . . 4 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((𝑋𝑌) = 𝑍 ↔ (dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑))))
6867biimprd 249 . . 3 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)) → (𝑋𝑌) = 𝑍))
6928, 66, 68mp2ani 694 . 2 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → (𝑋𝑌) = 𝑍)
706, 8, 69mp2an 688 1 (𝑋𝑌) = 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1530  wcel 2107  wral 3143  Vcvv 3500  cun 3938  wss 3940   ciun 4917  cmpt 5143  dom cdm 5554  ran crn 5555  ccom 5558  Fun wfun 6348  cfv 6354  (class class class)co 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153
This theorem is referenced by:  corclrcl  39936  cotrcltrcl  39954  corcltrcl  39968  cotrclrcl  39971
  Copyright terms: Public domain W3C validator