Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  comptiunov2i Structured version   Visualization version   GIF version

Theorem comptiunov2i 43702
Description: The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.)
Hypotheses
Ref Expression
comptiunov2.x 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
comptiunov2.y 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
comptiunov2.z 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
comptiunov2.i 𝐼 ∈ V
comptiunov2.j 𝐽 ∈ V
comptiunov2.k 𝐾 = (𝐼𝐽)
comptiunov2.1 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.2 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.3 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
Assertion
Ref Expression
comptiunov2i (𝑋𝑌) = 𝑍
Distinct variable groups:   𝑖,𝑎,   ,𝑏   ,𝑐   𝐼,𝑎,𝑖   𝑘,𝐼   𝑗,𝑎,𝐽,𝑖   𝐽,𝑏   𝑘,𝐽   𝑘,𝑐,𝐾   𝑋,𝑑   𝑌,𝑑   𝑍,𝑑   𝑎,𝑑,𝑖,𝑗   𝑏,𝑑,𝑗   𝑐,𝑑,𝑘
Allowed substitution hints:   (𝑗,𝑘,𝑑)   𝐼(𝑗,𝑏,𝑐,𝑑)   𝐽(𝑐,𝑑)   𝐾(𝑖,𝑗,𝑎,𝑏,𝑑)   𝑋(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑍(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem comptiunov2i
StepHypRef Expression
1 comptiunov2.x . . . 4 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
21funmpt2 6558 . . 3 Fun 𝑋
3 comptiunov2.y . . . 4 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
43funmpt2 6558 . . 3 Fun 𝑌
5 funco 6559 . . 3 ((Fun 𝑋 ∧ Fun 𝑌) → Fun (𝑋𝑌))
62, 4, 5mp2an 692 . 2 Fun (𝑋𝑌)
7 comptiunov2.z . . 3 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
87funmpt2 6558 . 2 Fun 𝑍
9 ssv 3974 . . . . . . 7 ran 𝑌 ⊆ V
10 comptiunov2.i . . . . . . . . 9 𝐼 ∈ V
11 ovex 7423 . . . . . . . . 9 (𝑎 𝑖) ∈ V
1210, 11iunex 7950 . . . . . . . 8 𝑖𝐼 (𝑎 𝑖) ∈ V
1312, 1dmmpti 6665 . . . . . . 7 dom 𝑋 = V
149, 13sseqtrri 3999 . . . . . 6 ran 𝑌 ⊆ dom 𝑋
15 dmcosseq 5943 . . . . . 6 (ran 𝑌 ⊆ dom 𝑋 → dom (𝑋𝑌) = dom 𝑌)
1614, 15ax-mp 5 . . . . 5 dom (𝑋𝑌) = dom 𝑌
17 comptiunov2.j . . . . . . 7 𝐽 ∈ V
18 ovex 7423 . . . . . . 7 (𝑏 𝑗) ∈ V
1917, 18iunex 7950 . . . . . 6 𝑗𝐽 (𝑏 𝑗) ∈ V
2019, 3dmmpti 6665 . . . . 5 dom 𝑌 = V
2116, 20eqtri 2753 . . . 4 dom (𝑋𝑌) = V
22 comptiunov2.k . . . . . . 7 𝐾 = (𝐼𝐽)
2310, 17unex 7723 . . . . . . 7 (𝐼𝐽) ∈ V
2422, 23eqeltri 2825 . . . . . 6 𝐾 ∈ V
25 ovex 7423 . . . . . 6 (𝑐 𝑘) ∈ V
2624, 25iunex 7950 . . . . 5 𝑘𝐾 (𝑐 𝑘) ∈ V
2726, 7dmmpti 6665 . . . 4 dom 𝑍 = V
2821, 27eqtr4i 2756 . . 3 dom (𝑋𝑌) = dom 𝑍
29 vex 3454 . . . . . . . . 9 𝑑 ∈ V
3029, 20eleqtrri 2828 . . . . . . . 8 𝑑 ∈ dom 𝑌
31 fvco 6962 . . . . . . . 8 ((Fun 𝑌𝑑 ∈ dom 𝑌) → ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑)))
324, 30, 31mp2an 692 . . . . . . 7 ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑))
33 oveq1 7397 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏 𝑗) = (𝑑 𝑗))
3433iuneq2d 4989 . . . . . . . . . 10 (𝑏 = 𝑑 𝑗𝐽 (𝑏 𝑗) = 𝑗𝐽 (𝑑 𝑗))
35 ovex 7423 . . . . . . . . . . 11 (𝑑 𝑗) ∈ V
3617, 35iunex 7950 . . . . . . . . . 10 𝑗𝐽 (𝑑 𝑗) ∈ V
3734, 3, 36fvmpt 6971 . . . . . . . . 9 (𝑑 ∈ V → (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗))
3837elv 3455 . . . . . . . 8 (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗)
3938fveq2i 6864 . . . . . . 7 (𝑋‘(𝑌𝑑)) = (𝑋 𝑗𝐽 (𝑑 𝑗))
40 oveq1 7397 . . . . . . . . . 10 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → (𝑎 𝑖) = ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4140iuneq2d 4989 . . . . . . . . 9 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → 𝑖𝐼 (𝑎 𝑖) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
42 ovex 7423 . . . . . . . . . 10 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4310, 42iunex 7950 . . . . . . . . 9 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4441, 1, 43fvmpt 6971 . . . . . . . 8 ( 𝑗𝐽 (𝑑 𝑗) ∈ V → (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4536, 44ax-mp 5 . . . . . . 7 (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
4632, 39, 453eqtri 2757 . . . . . 6 ((𝑋𝑌)‘𝑑) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
47 oveq1 7397 . . . . . . . . 9 (𝑐 = 𝑑 → (𝑐 𝑘) = (𝑑 𝑘))
4847iuneq2d 4989 . . . . . . . 8 (𝑐 = 𝑑 𝑘𝐾 (𝑐 𝑘) = 𝑘𝐾 (𝑑 𝑘))
49 ovex 7423 . . . . . . . . 9 (𝑑 𝑘) ∈ V
5024, 49iunex 7950 . . . . . . . 8 𝑘𝐾 (𝑑 𝑘) ∈ V
5148, 7, 50fvmpt 6971 . . . . . . 7 (𝑑 ∈ V → (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘))
5251elv 3455 . . . . . 6 (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘)
5346, 52eqeq12i 2748 . . . . 5 (((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
5421, 53raleqbii 3319 . . . 4 (∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ ∀𝑑 ∈ V 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
55 comptiunov2.3 . . . . . . 7 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
56 iunxun 5061 . . . . . . . 8 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) = ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘))
57 comptiunov2.1 . . . . . . . . 9 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
58 comptiunov2.2 . . . . . . . . 9 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
5957, 58unssi 4157 . . . . . . . 8 ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘)) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6056, 59eqsstri 3996 . . . . . . 7 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6155, 60eqssi 3966 . . . . . 6 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
62 iuneq1 4975 . . . . . . 7 (𝐾 = (𝐼𝐽) → 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘))
6322, 62ax-mp 5 . . . . . 6 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
6461, 63eqtr4i 2756 . . . . 5 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘)
6564a1i 11 . . . 4 (𝑑 ∈ V → 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
6654, 65mprgbir 3052 . . 3 𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)
67 eqfunfv 7011 . . . 4 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((𝑋𝑌) = 𝑍 ↔ (dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑))))
6867biimprd 248 . . 3 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)) → (𝑋𝑌) = 𝑍))
6928, 66, 68mp2ani 698 . 2 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → (𝑋𝑌) = 𝑍)
706, 8, 69mp2an 692 1 (𝑋𝑌) = 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cun 3915  wss 3917   ciun 4958  cmpt 5191  dom cdm 5641  ran crn 5642  ccom 5645  Fun wfun 6508  cfv 6514  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-ov 7393
This theorem is referenced by:  corclrcl  43703  cotrcltrcl  43721  corcltrcl  43735  cotrclrcl  43738
  Copyright terms: Public domain W3C validator