Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  comptiunov2i Structured version   Visualization version   GIF version

Theorem comptiunov2i 43730
Description: The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.)
Hypotheses
Ref Expression
comptiunov2.x 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
comptiunov2.y 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
comptiunov2.z 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
comptiunov2.i 𝐼 ∈ V
comptiunov2.j 𝐽 ∈ V
comptiunov2.k 𝐾 = (𝐼𝐽)
comptiunov2.1 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.2 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.3 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
Assertion
Ref Expression
comptiunov2i (𝑋𝑌) = 𝑍
Distinct variable groups:   𝑖,𝑎,   ,𝑏   ,𝑐   𝐼,𝑎,𝑖   𝑘,𝐼   𝑗,𝑎,𝐽,𝑖   𝐽,𝑏   𝑘,𝐽   𝑘,𝑐,𝐾   𝑋,𝑑   𝑌,𝑑   𝑍,𝑑   𝑎,𝑑,𝑖,𝑗   𝑏,𝑑,𝑗   𝑐,𝑑,𝑘
Allowed substitution hints:   (𝑗,𝑘,𝑑)   𝐼(𝑗,𝑏,𝑐,𝑑)   𝐽(𝑐,𝑑)   𝐾(𝑖,𝑗,𝑎,𝑏,𝑑)   𝑋(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑍(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem comptiunov2i
StepHypRef Expression
1 comptiunov2.x . . . 4 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
21funmpt2 6575 . . 3 Fun 𝑋
3 comptiunov2.y . . . 4 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
43funmpt2 6575 . . 3 Fun 𝑌
5 funco 6576 . . 3 ((Fun 𝑋 ∧ Fun 𝑌) → Fun (𝑋𝑌))
62, 4, 5mp2an 692 . 2 Fun (𝑋𝑌)
7 comptiunov2.z . . 3 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
87funmpt2 6575 . 2 Fun 𝑍
9 ssv 3983 . . . . . . 7 ran 𝑌 ⊆ V
10 comptiunov2.i . . . . . . . . 9 𝐼 ∈ V
11 ovex 7438 . . . . . . . . 9 (𝑎 𝑖) ∈ V
1210, 11iunex 7967 . . . . . . . 8 𝑖𝐼 (𝑎 𝑖) ∈ V
1312, 1dmmpti 6682 . . . . . . 7 dom 𝑋 = V
149, 13sseqtrri 4008 . . . . . 6 ran 𝑌 ⊆ dom 𝑋
15 dmcosseq 5956 . . . . . 6 (ran 𝑌 ⊆ dom 𝑋 → dom (𝑋𝑌) = dom 𝑌)
1614, 15ax-mp 5 . . . . 5 dom (𝑋𝑌) = dom 𝑌
17 comptiunov2.j . . . . . . 7 𝐽 ∈ V
18 ovex 7438 . . . . . . 7 (𝑏 𝑗) ∈ V
1917, 18iunex 7967 . . . . . 6 𝑗𝐽 (𝑏 𝑗) ∈ V
2019, 3dmmpti 6682 . . . . 5 dom 𝑌 = V
2116, 20eqtri 2758 . . . 4 dom (𝑋𝑌) = V
22 comptiunov2.k . . . . . . 7 𝐾 = (𝐼𝐽)
2310, 17unex 7738 . . . . . . 7 (𝐼𝐽) ∈ V
2422, 23eqeltri 2830 . . . . . 6 𝐾 ∈ V
25 ovex 7438 . . . . . 6 (𝑐 𝑘) ∈ V
2624, 25iunex 7967 . . . . 5 𝑘𝐾 (𝑐 𝑘) ∈ V
2726, 7dmmpti 6682 . . . 4 dom 𝑍 = V
2821, 27eqtr4i 2761 . . 3 dom (𝑋𝑌) = dom 𝑍
29 vex 3463 . . . . . . . . 9 𝑑 ∈ V
3029, 20eleqtrri 2833 . . . . . . . 8 𝑑 ∈ dom 𝑌
31 fvco 6977 . . . . . . . 8 ((Fun 𝑌𝑑 ∈ dom 𝑌) → ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑)))
324, 30, 31mp2an 692 . . . . . . 7 ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑))
33 oveq1 7412 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏 𝑗) = (𝑑 𝑗))
3433iuneq2d 4998 . . . . . . . . . 10 (𝑏 = 𝑑 𝑗𝐽 (𝑏 𝑗) = 𝑗𝐽 (𝑑 𝑗))
35 ovex 7438 . . . . . . . . . . 11 (𝑑 𝑗) ∈ V
3617, 35iunex 7967 . . . . . . . . . 10 𝑗𝐽 (𝑑 𝑗) ∈ V
3734, 3, 36fvmpt 6986 . . . . . . . . 9 (𝑑 ∈ V → (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗))
3837elv 3464 . . . . . . . 8 (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗)
3938fveq2i 6879 . . . . . . 7 (𝑋‘(𝑌𝑑)) = (𝑋 𝑗𝐽 (𝑑 𝑗))
40 oveq1 7412 . . . . . . . . . 10 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → (𝑎 𝑖) = ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4140iuneq2d 4998 . . . . . . . . 9 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → 𝑖𝐼 (𝑎 𝑖) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
42 ovex 7438 . . . . . . . . . 10 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4310, 42iunex 7967 . . . . . . . . 9 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4441, 1, 43fvmpt 6986 . . . . . . . 8 ( 𝑗𝐽 (𝑑 𝑗) ∈ V → (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4536, 44ax-mp 5 . . . . . . 7 (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
4632, 39, 453eqtri 2762 . . . . . 6 ((𝑋𝑌)‘𝑑) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
47 oveq1 7412 . . . . . . . . 9 (𝑐 = 𝑑 → (𝑐 𝑘) = (𝑑 𝑘))
4847iuneq2d 4998 . . . . . . . 8 (𝑐 = 𝑑 𝑘𝐾 (𝑐 𝑘) = 𝑘𝐾 (𝑑 𝑘))
49 ovex 7438 . . . . . . . . 9 (𝑑 𝑘) ∈ V
5024, 49iunex 7967 . . . . . . . 8 𝑘𝐾 (𝑑 𝑘) ∈ V
5148, 7, 50fvmpt 6986 . . . . . . 7 (𝑑 ∈ V → (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘))
5251elv 3464 . . . . . 6 (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘)
5346, 52eqeq12i 2753 . . . . 5 (((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
5421, 53raleqbii 3323 . . . 4 (∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ ∀𝑑 ∈ V 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
55 comptiunov2.3 . . . . . . 7 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
56 iunxun 5070 . . . . . . . 8 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) = ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘))
57 comptiunov2.1 . . . . . . . . 9 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
58 comptiunov2.2 . . . . . . . . 9 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
5957, 58unssi 4166 . . . . . . . 8 ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘)) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6056, 59eqsstri 4005 . . . . . . 7 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6155, 60eqssi 3975 . . . . . 6 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
62 iuneq1 4984 . . . . . . 7 (𝐾 = (𝐼𝐽) → 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘))
6322, 62ax-mp 5 . . . . . 6 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
6461, 63eqtr4i 2761 . . . . 5 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘)
6564a1i 11 . . . 4 (𝑑 ∈ V → 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
6654, 65mprgbir 3058 . . 3 𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)
67 eqfunfv 7026 . . . 4 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((𝑋𝑌) = 𝑍 ↔ (dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑))))
6867biimprd 248 . . 3 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)) → (𝑋𝑌) = 𝑍))
6928, 66, 68mp2ani 698 . 2 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → (𝑋𝑌) = 𝑍)
706, 8, 69mp2an 692 1 (𝑋𝑌) = 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cun 3924  wss 3926   ciun 4967  cmpt 5201  dom cdm 5654  ran crn 5655  ccom 5658  Fun wfun 6525  cfv 6531  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-ov 7408
This theorem is referenced by:  corclrcl  43731  cotrcltrcl  43749  corcltrcl  43763  cotrclrcl  43766
  Copyright terms: Public domain W3C validator