Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  comptiunov2i Structured version   Visualization version   GIF version

Theorem comptiunov2i 42759
Description: The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.)
Hypotheses
Ref Expression
comptiunov2.x 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
comptiunov2.y 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
comptiunov2.z 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
comptiunov2.i 𝐼 ∈ V
comptiunov2.j 𝐽 ∈ V
comptiunov2.k 𝐾 = (𝐼𝐽)
comptiunov2.1 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.2 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.3 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
Assertion
Ref Expression
comptiunov2i (𝑋𝑌) = 𝑍
Distinct variable groups:   𝑖,𝑎,   ,𝑏   ,𝑐   𝐼,𝑎,𝑖   𝑘,𝐼   𝑗,𝑎,𝐽,𝑖   𝐽,𝑏   𝑘,𝐽   𝑘,𝑐,𝐾   𝑋,𝑑   𝑌,𝑑   𝑍,𝑑   𝑎,𝑑,𝑖,𝑗   𝑏,𝑑,𝑗   𝑐,𝑑,𝑘
Allowed substitution hints:   (𝑗,𝑘,𝑑)   𝐼(𝑗,𝑏,𝑐,𝑑)   𝐽(𝑐,𝑑)   𝐾(𝑖,𝑗,𝑎,𝑏,𝑑)   𝑋(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑍(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem comptiunov2i
StepHypRef Expression
1 comptiunov2.x . . . 4 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
21funmpt2 6586 . . 3 Fun 𝑋
3 comptiunov2.y . . . 4 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
43funmpt2 6586 . . 3 Fun 𝑌
5 funco 6587 . . 3 ((Fun 𝑋 ∧ Fun 𝑌) → Fun (𝑋𝑌))
62, 4, 5mp2an 688 . 2 Fun (𝑋𝑌)
7 comptiunov2.z . . 3 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
87funmpt2 6586 . 2 Fun 𝑍
9 ssv 4005 . . . . . . 7 ran 𝑌 ⊆ V
10 comptiunov2.i . . . . . . . . 9 𝐼 ∈ V
11 ovex 7444 . . . . . . . . 9 (𝑎 𝑖) ∈ V
1210, 11iunex 7957 . . . . . . . 8 𝑖𝐼 (𝑎 𝑖) ∈ V
1312, 1dmmpti 6693 . . . . . . 7 dom 𝑋 = V
149, 13sseqtrri 4018 . . . . . 6 ran 𝑌 ⊆ dom 𝑋
15 dmcosseq 5971 . . . . . 6 (ran 𝑌 ⊆ dom 𝑋 → dom (𝑋𝑌) = dom 𝑌)
1614, 15ax-mp 5 . . . . 5 dom (𝑋𝑌) = dom 𝑌
17 comptiunov2.j . . . . . . 7 𝐽 ∈ V
18 ovex 7444 . . . . . . 7 (𝑏 𝑗) ∈ V
1917, 18iunex 7957 . . . . . 6 𝑗𝐽 (𝑏 𝑗) ∈ V
2019, 3dmmpti 6693 . . . . 5 dom 𝑌 = V
2116, 20eqtri 2758 . . . 4 dom (𝑋𝑌) = V
22 comptiunov2.k . . . . . . 7 𝐾 = (𝐼𝐽)
2310, 17unex 7735 . . . . . . 7 (𝐼𝐽) ∈ V
2422, 23eqeltri 2827 . . . . . 6 𝐾 ∈ V
25 ovex 7444 . . . . . 6 (𝑐 𝑘) ∈ V
2624, 25iunex 7957 . . . . 5 𝑘𝐾 (𝑐 𝑘) ∈ V
2726, 7dmmpti 6693 . . . 4 dom 𝑍 = V
2821, 27eqtr4i 2761 . . 3 dom (𝑋𝑌) = dom 𝑍
29 vex 3476 . . . . . . . . 9 𝑑 ∈ V
3029, 20eleqtrri 2830 . . . . . . . 8 𝑑 ∈ dom 𝑌
31 fvco 6988 . . . . . . . 8 ((Fun 𝑌𝑑 ∈ dom 𝑌) → ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑)))
324, 30, 31mp2an 688 . . . . . . 7 ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑))
33 oveq1 7418 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏 𝑗) = (𝑑 𝑗))
3433iuneq2d 5025 . . . . . . . . . 10 (𝑏 = 𝑑 𝑗𝐽 (𝑏 𝑗) = 𝑗𝐽 (𝑑 𝑗))
35 ovex 7444 . . . . . . . . . . 11 (𝑑 𝑗) ∈ V
3617, 35iunex 7957 . . . . . . . . . 10 𝑗𝐽 (𝑑 𝑗) ∈ V
3734, 3, 36fvmpt 6997 . . . . . . . . 9 (𝑑 ∈ V → (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗))
3837elv 3478 . . . . . . . 8 (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗)
3938fveq2i 6893 . . . . . . 7 (𝑋‘(𝑌𝑑)) = (𝑋 𝑗𝐽 (𝑑 𝑗))
40 oveq1 7418 . . . . . . . . . 10 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → (𝑎 𝑖) = ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4140iuneq2d 5025 . . . . . . . . 9 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → 𝑖𝐼 (𝑎 𝑖) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
42 ovex 7444 . . . . . . . . . 10 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4310, 42iunex 7957 . . . . . . . . 9 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4441, 1, 43fvmpt 6997 . . . . . . . 8 ( 𝑗𝐽 (𝑑 𝑗) ∈ V → (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4536, 44ax-mp 5 . . . . . . 7 (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
4632, 39, 453eqtri 2762 . . . . . 6 ((𝑋𝑌)‘𝑑) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
47 oveq1 7418 . . . . . . . . 9 (𝑐 = 𝑑 → (𝑐 𝑘) = (𝑑 𝑘))
4847iuneq2d 5025 . . . . . . . 8 (𝑐 = 𝑑 𝑘𝐾 (𝑐 𝑘) = 𝑘𝐾 (𝑑 𝑘))
49 ovex 7444 . . . . . . . . 9 (𝑑 𝑘) ∈ V
5024, 49iunex 7957 . . . . . . . 8 𝑘𝐾 (𝑑 𝑘) ∈ V
5148, 7, 50fvmpt 6997 . . . . . . 7 (𝑑 ∈ V → (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘))
5251elv 3478 . . . . . 6 (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘)
5346, 52eqeq12i 2748 . . . . 5 (((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
5421, 53raleqbii 3336 . . . 4 (∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ ∀𝑑 ∈ V 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
55 comptiunov2.3 . . . . . . 7 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
56 iunxun 5096 . . . . . . . 8 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) = ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘))
57 comptiunov2.1 . . . . . . . . 9 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
58 comptiunov2.2 . . . . . . . . 9 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
5957, 58unssi 4184 . . . . . . . 8 ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘)) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6056, 59eqsstri 4015 . . . . . . 7 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6155, 60eqssi 3997 . . . . . 6 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
62 iuneq1 5012 . . . . . . 7 (𝐾 = (𝐼𝐽) → 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘))
6322, 62ax-mp 5 . . . . . 6 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
6461, 63eqtr4i 2761 . . . . 5 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘)
6564a1i 11 . . . 4 (𝑑 ∈ V → 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
6654, 65mprgbir 3066 . . 3 𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)
67 eqfunfv 7036 . . . 4 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((𝑋𝑌) = 𝑍 ↔ (dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑))))
6867biimprd 247 . . 3 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)) → (𝑋𝑌) = 𝑍))
6928, 66, 68mp2ani 694 . 2 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → (𝑋𝑌) = 𝑍)
706, 8, 69mp2an 688 1 (𝑋𝑌) = 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  cun 3945  wss 3947   ciun 4996  cmpt 5230  dom cdm 5675  ran crn 5676  ccom 5679  Fun wfun 6536  cfv 6542  (class class class)co 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-ov 7414
This theorem is referenced by:  corclrcl  42760  cotrcltrcl  42778  corcltrcl  42792  cotrclrcl  42795
  Copyright terms: Public domain W3C validator