Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  comptiunov2i Structured version   Visualization version   GIF version

Theorem comptiunov2i 43719
Description: The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.)
Hypotheses
Ref Expression
comptiunov2.x 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
comptiunov2.y 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
comptiunov2.z 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
comptiunov2.i 𝐼 ∈ V
comptiunov2.j 𝐽 ∈ V
comptiunov2.k 𝐾 = (𝐼𝐽)
comptiunov2.1 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.2 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
comptiunov2.3 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
Assertion
Ref Expression
comptiunov2i (𝑋𝑌) = 𝑍
Distinct variable groups:   𝑖,𝑎,   ,𝑏   ,𝑐   𝐼,𝑎,𝑖   𝑘,𝐼   𝑗,𝑎,𝐽,𝑖   𝐽,𝑏   𝑘,𝐽   𝑘,𝑐,𝐾   𝑋,𝑑   𝑌,𝑑   𝑍,𝑑   𝑎,𝑑,𝑖,𝑗   𝑏,𝑑,𝑗   𝑐,𝑑,𝑘
Allowed substitution hints:   (𝑗,𝑘,𝑑)   𝐼(𝑗,𝑏,𝑐,𝑑)   𝐽(𝑐,𝑑)   𝐾(𝑖,𝑗,𝑎,𝑏,𝑑)   𝑋(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑍(𝑖,𝑗,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem comptiunov2i
StepHypRef Expression
1 comptiunov2.x . . . 4 𝑋 = (𝑎 ∈ V ↦ 𝑖𝐼 (𝑎 𝑖))
21funmpt2 6605 . . 3 Fun 𝑋
3 comptiunov2.y . . . 4 𝑌 = (𝑏 ∈ V ↦ 𝑗𝐽 (𝑏 𝑗))
43funmpt2 6605 . . 3 Fun 𝑌
5 funco 6606 . . 3 ((Fun 𝑋 ∧ Fun 𝑌) → Fun (𝑋𝑌))
62, 4, 5mp2an 692 . 2 Fun (𝑋𝑌)
7 comptiunov2.z . . 3 𝑍 = (𝑐 ∈ V ↦ 𝑘𝐾 (𝑐 𝑘))
87funmpt2 6605 . 2 Fun 𝑍
9 ssv 4008 . . . . . . 7 ran 𝑌 ⊆ V
10 comptiunov2.i . . . . . . . . 9 𝐼 ∈ V
11 ovex 7464 . . . . . . . . 9 (𝑎 𝑖) ∈ V
1210, 11iunex 7993 . . . . . . . 8 𝑖𝐼 (𝑎 𝑖) ∈ V
1312, 1dmmpti 6712 . . . . . . 7 dom 𝑋 = V
149, 13sseqtrri 4033 . . . . . 6 ran 𝑌 ⊆ dom 𝑋
15 dmcosseq 5987 . . . . . 6 (ran 𝑌 ⊆ dom 𝑋 → dom (𝑋𝑌) = dom 𝑌)
1614, 15ax-mp 5 . . . . 5 dom (𝑋𝑌) = dom 𝑌
17 comptiunov2.j . . . . . . 7 𝐽 ∈ V
18 ovex 7464 . . . . . . 7 (𝑏 𝑗) ∈ V
1917, 18iunex 7993 . . . . . 6 𝑗𝐽 (𝑏 𝑗) ∈ V
2019, 3dmmpti 6712 . . . . 5 dom 𝑌 = V
2116, 20eqtri 2765 . . . 4 dom (𝑋𝑌) = V
22 comptiunov2.k . . . . . . 7 𝐾 = (𝐼𝐽)
2310, 17unex 7764 . . . . . . 7 (𝐼𝐽) ∈ V
2422, 23eqeltri 2837 . . . . . 6 𝐾 ∈ V
25 ovex 7464 . . . . . 6 (𝑐 𝑘) ∈ V
2624, 25iunex 7993 . . . . 5 𝑘𝐾 (𝑐 𝑘) ∈ V
2726, 7dmmpti 6712 . . . 4 dom 𝑍 = V
2821, 27eqtr4i 2768 . . 3 dom (𝑋𝑌) = dom 𝑍
29 vex 3484 . . . . . . . . 9 𝑑 ∈ V
3029, 20eleqtrri 2840 . . . . . . . 8 𝑑 ∈ dom 𝑌
31 fvco 7007 . . . . . . . 8 ((Fun 𝑌𝑑 ∈ dom 𝑌) → ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑)))
324, 30, 31mp2an 692 . . . . . . 7 ((𝑋𝑌)‘𝑑) = (𝑋‘(𝑌𝑑))
33 oveq1 7438 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏 𝑗) = (𝑑 𝑗))
3433iuneq2d 5022 . . . . . . . . . 10 (𝑏 = 𝑑 𝑗𝐽 (𝑏 𝑗) = 𝑗𝐽 (𝑑 𝑗))
35 ovex 7464 . . . . . . . . . . 11 (𝑑 𝑗) ∈ V
3617, 35iunex 7993 . . . . . . . . . 10 𝑗𝐽 (𝑑 𝑗) ∈ V
3734, 3, 36fvmpt 7016 . . . . . . . . 9 (𝑑 ∈ V → (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗))
3837elv 3485 . . . . . . . 8 (𝑌𝑑) = 𝑗𝐽 (𝑑 𝑗)
3938fveq2i 6909 . . . . . . 7 (𝑋‘(𝑌𝑑)) = (𝑋 𝑗𝐽 (𝑑 𝑗))
40 oveq1 7438 . . . . . . . . . 10 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → (𝑎 𝑖) = ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4140iuneq2d 5022 . . . . . . . . 9 (𝑎 = 𝑗𝐽 (𝑑 𝑗) → 𝑖𝐼 (𝑎 𝑖) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
42 ovex 7464 . . . . . . . . . 10 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4310, 42iunex 7993 . . . . . . . . 9 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ∈ V
4441, 1, 43fvmpt 7016 . . . . . . . 8 ( 𝑗𝐽 (𝑑 𝑗) ∈ V → (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖))
4536, 44ax-mp 5 . . . . . . 7 (𝑋 𝑗𝐽 (𝑑 𝑗)) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
4632, 39, 453eqtri 2769 . . . . . 6 ((𝑋𝑌)‘𝑑) = 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
47 oveq1 7438 . . . . . . . . 9 (𝑐 = 𝑑 → (𝑐 𝑘) = (𝑑 𝑘))
4847iuneq2d 5022 . . . . . . . 8 (𝑐 = 𝑑 𝑘𝐾 (𝑐 𝑘) = 𝑘𝐾 (𝑑 𝑘))
49 ovex 7464 . . . . . . . . 9 (𝑑 𝑘) ∈ V
5024, 49iunex 7993 . . . . . . . 8 𝑘𝐾 (𝑑 𝑘) ∈ V
5148, 7, 50fvmpt 7016 . . . . . . 7 (𝑑 ∈ V → (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘))
5251elv 3485 . . . . . 6 (𝑍𝑑) = 𝑘𝐾 (𝑑 𝑘)
5346, 52eqeq12i 2755 . . . . 5 (((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
5421, 53raleqbii 3344 . . . 4 (∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑) ↔ ∀𝑑 ∈ V 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
55 comptiunov2.3 . . . . . . 7 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) ⊆ 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
56 iunxun 5094 . . . . . . . 8 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) = ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘))
57 comptiunov2.1 . . . . . . . . 9 𝑘𝐼 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
58 comptiunov2.2 . . . . . . . . 9 𝑘𝐽 (𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
5957, 58unssi 4191 . . . . . . . 8 ( 𝑘𝐼 (𝑑 𝑘) ∪ 𝑘𝐽 (𝑑 𝑘)) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6056, 59eqsstri 4030 . . . . . . 7 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘) ⊆ 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖)
6155, 60eqssi 4000 . . . . . 6 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
62 iuneq1 5008 . . . . . . 7 (𝐾 = (𝐼𝐽) → 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘))
6322, 62ax-mp 5 . . . . . 6 𝑘𝐾 (𝑑 𝑘) = 𝑘 ∈ (𝐼𝐽)(𝑑 𝑘)
6461, 63eqtr4i 2768 . . . . 5 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘)
6564a1i 11 . . . 4 (𝑑 ∈ V → 𝑖𝐼 ( 𝑗𝐽 (𝑑 𝑗) 𝑖) = 𝑘𝐾 (𝑑 𝑘))
6654, 65mprgbir 3068 . . 3 𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)
67 eqfunfv 7056 . . . 4 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((𝑋𝑌) = 𝑍 ↔ (dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑))))
6867biimprd 248 . . 3 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → ((dom (𝑋𝑌) = dom 𝑍 ∧ ∀𝑑 ∈ dom (𝑋𝑌)((𝑋𝑌)‘𝑑) = (𝑍𝑑)) → (𝑋𝑌) = 𝑍))
6928, 66, 68mp2ani 698 . 2 ((Fun (𝑋𝑌) ∧ Fun 𝑍) → (𝑋𝑌) = 𝑍)
706, 8, 69mp2an 692 1 (𝑋𝑌) = 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cun 3949  wss 3951   ciun 4991  cmpt 5225  dom cdm 5685  ran crn 5686  ccom 5689  Fun wfun 6555  cfv 6561  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-ov 7434
This theorem is referenced by:  corclrcl  43720  cotrcltrcl  43738  corcltrcl  43752  cotrclrcl  43755
  Copyright terms: Public domain W3C validator