Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Visualization version   GIF version

Theorem kur14lem9 33808
Description: Lemma for kur14 33810. Since the set 𝑇 is closed under closure and complement, it contains the minimal set 𝑆 as a subset, so 𝑆 also has at most 14 elements. (Indeed 𝑆 = 𝑇, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
kur14lem.c 𝐶 = (𝐾‘(𝑋𝐴))
kur14lem.d 𝐷 = (𝐼‘(𝐾𝐴))
kur14lem.t 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
kur14lem.s 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
Assertion
Ref Expression
kur14lem9 (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑦,𝑇   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑦)

Proof of Theorem kur14lem9
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
2 vex 3449 . . . . . 6 𝑠 ∈ V
32elintrab 4921 . . . . 5 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ↔ ∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥))
4 ssun1 4132 . . . . . . . 8 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})
5 ssun1 4132 . . . . . . . . 9 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})
6 ssun1 4132 . . . . . . . . . 10 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
7 kur14lem.t . . . . . . . . . 10 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
86, 7sseqtrri 3981 . . . . . . . . 9 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ 𝑇
95, 8sstri 3953 . . . . . . . 8 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ 𝑇
104, 9sstri 3953 . . . . . . 7 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇
11 kur14lem.j . . . . . . . . . . 11 𝐽 ∈ Top
12 kur14lem.x . . . . . . . . . . . 12 𝑋 = 𝐽
1312topopn 22255 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝑋𝐽)
1411, 13ax-mp 5 . . . . . . . . . 10 𝑋𝐽
1514elexi 3464 . . . . . . . . 9 𝑋 ∈ V
16 kur14lem.a . . . . . . . . 9 𝐴𝑋
1715, 16ssexi 5279 . . . . . . . 8 𝐴 ∈ V
1817tpid1 4729 . . . . . . 7 𝐴 ∈ {𝐴, (𝑋𝐴), (𝐾𝐴)}
1910, 18sselii 3941 . . . . . 6 𝐴𝑇
20 kur14lem.k . . . . . . . . 9 𝐾 = (cls‘𝐽)
21 kur14lem.i . . . . . . . . 9 𝐼 = (int‘𝐽)
22 kur14lem.b . . . . . . . . 9 𝐵 = (𝑋 ∖ (𝐾𝐴))
23 kur14lem.c . . . . . . . . 9 𝐶 = (𝐾‘(𝑋𝐴))
24 kur14lem.d . . . . . . . . 9 𝐷 = (𝐼‘(𝐾𝐴))
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 33806 . . . . . . . 8 (𝑦𝑇 → (𝑦𝑋 ∧ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
2625simprd 496 . . . . . . 7 (𝑦𝑇 → {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)
2726rgen 3066 . . . . . 6 𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇
2825simpld 495 . . . . . . . . . 10 (𝑦𝑇𝑦𝑋)
2915elpw2 5302 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3028, 29sylibr 233 . . . . . . . . 9 (𝑦𝑇𝑦 ∈ 𝒫 𝑋)
3130ssriv 3948 . . . . . . . 8 𝑇 ⊆ 𝒫 𝑋
3215pwex 5335 . . . . . . . . 9 𝒫 𝑋 ∈ V
3332elpw2 5302 . . . . . . . 8 (𝑇 ∈ 𝒫 𝒫 𝑋𝑇 ⊆ 𝒫 𝑋)
3431, 33mpbir 230 . . . . . . 7 𝑇 ∈ 𝒫 𝒫 𝑋
35 eleq2 2826 . . . . . . . . . 10 (𝑥 = 𝑇 → (𝐴𝑥𝐴𝑇))
36 sseq2 3970 . . . . . . . . . . 11 (𝑥 = 𝑇 → ({(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3736raleqbi1dv 3307 . . . . . . . . . 10 (𝑥 = 𝑇 → (∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3835, 37anbi12d 631 . . . . . . . . 9 (𝑥 = 𝑇 → ((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)))
39 eleq2 2826 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑠𝑥𝑠𝑇))
4038, 39imbi12d 344 . . . . . . . 8 (𝑥 = 𝑇 → (((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) ↔ ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4140rspccv 3578 . . . . . . 7 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → (𝑇 ∈ 𝒫 𝒫 𝑋 → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4234, 41mpi 20 . . . . . 6 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇))
4319, 27, 42mp2ani 696 . . . . 5 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → 𝑠𝑇)
443, 43sylbi 216 . . . 4 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} → 𝑠𝑇)
4544ssriv 3948 . . 3 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ⊆ 𝑇
461, 45eqsstri 3978 . 2 𝑆𝑇
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 33807 . 2 (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ 14)
48 1nn0 12429 . . 3 1 ∈ ℕ0
49 4nn0 12432 . . 3 4 ∈ ℕ0
5048, 49deccl 12633 . 2 14 ∈ ℕ0
5146, 47, 50hashsslei 14326 1 (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  cdif 3907  cun 3908  wss 3910  𝒫 cpw 4560  {cpr 4588  {ctp 4590   cuni 4865   cint 4907   class class class wbr 5105  cfv 6496  Fincfn 8883  1c1 11052  cle 11190  4c4 12210  cdc 12618  chash 14230  Topctop 22242  intcnt 22368  clsccl 22369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-hash 14231  df-top 22243  df-cld 22370  df-ntr 22371  df-cls 22372
This theorem is referenced by:  kur14lem10  33809
  Copyright terms: Public domain W3C validator