Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Visualization version   GIF version

Theorem kur14lem9 33076
Description: Lemma for kur14 33078. Since the set 𝑇 is closed under closure and complement, it contains the minimal set 𝑆 as a subset, so 𝑆 also has at most 14 elements. (Indeed 𝑆 = 𝑇, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
kur14lem.c 𝐶 = (𝐾‘(𝑋𝐴))
kur14lem.d 𝐷 = (𝐼‘(𝐾𝐴))
kur14lem.t 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
kur14lem.s 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
Assertion
Ref Expression
kur14lem9 (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑦,𝑇   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑦)

Proof of Theorem kur14lem9
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
2 vex 3426 . . . . . 6 𝑠 ∈ V
32elintrab 4888 . . . . 5 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ↔ ∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥))
4 ssun1 4102 . . . . . . . 8 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})
5 ssun1 4102 . . . . . . . . 9 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})
6 ssun1 4102 . . . . . . . . . 10 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
7 kur14lem.t . . . . . . . . . 10 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
86, 7sseqtrri 3954 . . . . . . . . 9 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ 𝑇
95, 8sstri 3926 . . . . . . . 8 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ 𝑇
104, 9sstri 3926 . . . . . . 7 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇
11 kur14lem.j . . . . . . . . . . 11 𝐽 ∈ Top
12 kur14lem.x . . . . . . . . . . . 12 𝑋 = 𝐽
1312topopn 21963 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝑋𝐽)
1411, 13ax-mp 5 . . . . . . . . . 10 𝑋𝐽
1514elexi 3441 . . . . . . . . 9 𝑋 ∈ V
16 kur14lem.a . . . . . . . . 9 𝐴𝑋
1715, 16ssexi 5241 . . . . . . . 8 𝐴 ∈ V
1817tpid1 4701 . . . . . . 7 𝐴 ∈ {𝐴, (𝑋𝐴), (𝐾𝐴)}
1910, 18sselii 3914 . . . . . 6 𝐴𝑇
20 kur14lem.k . . . . . . . . 9 𝐾 = (cls‘𝐽)
21 kur14lem.i . . . . . . . . 9 𝐼 = (int‘𝐽)
22 kur14lem.b . . . . . . . . 9 𝐵 = (𝑋 ∖ (𝐾𝐴))
23 kur14lem.c . . . . . . . . 9 𝐶 = (𝐾‘(𝑋𝐴))
24 kur14lem.d . . . . . . . . 9 𝐷 = (𝐼‘(𝐾𝐴))
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 33074 . . . . . . . 8 (𝑦𝑇 → (𝑦𝑋 ∧ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
2625simprd 495 . . . . . . 7 (𝑦𝑇 → {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)
2726rgen 3073 . . . . . 6 𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇
2825simpld 494 . . . . . . . . . 10 (𝑦𝑇𝑦𝑋)
2915elpw2 5264 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3028, 29sylibr 233 . . . . . . . . 9 (𝑦𝑇𝑦 ∈ 𝒫 𝑋)
3130ssriv 3921 . . . . . . . 8 𝑇 ⊆ 𝒫 𝑋
3215pwex 5298 . . . . . . . . 9 𝒫 𝑋 ∈ V
3332elpw2 5264 . . . . . . . 8 (𝑇 ∈ 𝒫 𝒫 𝑋𝑇 ⊆ 𝒫 𝑋)
3431, 33mpbir 230 . . . . . . 7 𝑇 ∈ 𝒫 𝒫 𝑋
35 eleq2 2827 . . . . . . . . . 10 (𝑥 = 𝑇 → (𝐴𝑥𝐴𝑇))
36 sseq2 3943 . . . . . . . . . . 11 (𝑥 = 𝑇 → ({(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3736raleqbi1dv 3331 . . . . . . . . . 10 (𝑥 = 𝑇 → (∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3835, 37anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑇 → ((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)))
39 eleq2 2827 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑠𝑥𝑠𝑇))
4038, 39imbi12d 344 . . . . . . . 8 (𝑥 = 𝑇 → (((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) ↔ ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4140rspccv 3549 . . . . . . 7 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → (𝑇 ∈ 𝒫 𝒫 𝑋 → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4234, 41mpi 20 . . . . . 6 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇))
4319, 27, 42mp2ani 694 . . . . 5 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → 𝑠𝑇)
443, 43sylbi 216 . . . 4 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} → 𝑠𝑇)
4544ssriv 3921 . . 3 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ⊆ 𝑇
461, 45eqsstri 3951 . 2 𝑆𝑇
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 33075 . 2 (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ 14)
48 1nn0 12179 . . 3 1 ∈ ℕ0
49 4nn0 12182 . . 3 4 ∈ ℕ0
5048, 49deccl 12381 . 2 14 ∈ ℕ0
5146, 47, 50hashsslei 14069 1 (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  cun 3881  wss 3883  𝒫 cpw 4530  {cpr 4560  {ctp 4562   cuni 4836   cint 4876   class class class wbr 5070  cfv 6418  Fincfn 8691  1c1 10803  cle 10941  4c4 11960  cdc 12366  chash 13972  Topctop 21950  intcnt 22076  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-hash 13973  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  kur14lem10  33077
  Copyright terms: Public domain W3C validator