Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Visualization version   GIF version

Theorem kur14lem9 34660
Description: Lemma for kur14 34662. Since the set 𝑇 is closed under closure and complement, it contains the minimal set 𝑆 as a subset, so 𝑆 also has at most 14 elements. (Indeed 𝑆 = 𝑇, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = βˆͺ 𝐽
kur14lem.k 𝐾 = (clsβ€˜π½)
kur14lem.i 𝐼 = (intβ€˜π½)
kur14lem.a 𝐴 βŠ† 𝑋
kur14lem.b 𝐡 = (𝑋 βˆ– (πΎβ€˜π΄))
kur14lem.c 𝐢 = (πΎβ€˜(𝑋 βˆ– 𝐴))
kur14lem.d 𝐷 = (πΌβ€˜(πΎβ€˜π΄))
kur14lem.t 𝑇 = ((({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βˆͺ ({(πΌβ€˜πΆ), (πΎβ€˜π·), (πΌβ€˜(πΎβ€˜π΅))} βˆͺ {(πΎβ€˜(πΌβ€˜πΆ)), (πΌβ€˜(πΎβ€˜(πΌβ€˜π΄)))}))
kur14lem.s 𝑆 = ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)}
Assertion
Ref Expression
kur14lem9 (𝑆 ∈ Fin ∧ (β™―β€˜π‘†) ≀ 14)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐾   π‘₯,𝑦,𝑇   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐡(π‘₯,𝑦)   𝐢(π‘₯,𝑦)   𝐷(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   𝐼(π‘₯,𝑦)   𝐽(π‘₯,𝑦)   𝐾(𝑦)

Proof of Theorem kur14lem9
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3 𝑆 = ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)}
2 vex 3470 . . . . . 6 𝑠 ∈ V
32elintrab 4954 . . . . 5 (𝑠 ∈ ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)} ↔ βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯))
4 ssun1 4164 . . . . . . . 8 {𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βŠ† ({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)})
5 ssun1 4164 . . . . . . . . 9 ({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βŠ† (({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))})
6 ssun1 4164 . . . . . . . . . 10 (({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βŠ† ((({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βˆͺ ({(πΌβ€˜πΆ), (πΎβ€˜π·), (πΌβ€˜(πΎβ€˜π΅))} βˆͺ {(πΎβ€˜(πΌβ€˜πΆ)), (πΌβ€˜(πΎβ€˜(πΌβ€˜π΄)))}))
7 kur14lem.t . . . . . . . . . 10 𝑇 = ((({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βˆͺ ({(πΌβ€˜πΆ), (πΎβ€˜π·), (πΌβ€˜(πΎβ€˜π΅))} βˆͺ {(πΎβ€˜(πΌβ€˜πΆ)), (πΌβ€˜(πΎβ€˜(πΌβ€˜π΄)))}))
86, 7sseqtrri 4011 . . . . . . . . 9 (({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βŠ† 𝑇
95, 8sstri 3983 . . . . . . . 8 ({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βŠ† 𝑇
104, 9sstri 3983 . . . . . . 7 {𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βŠ† 𝑇
11 kur14lem.j . . . . . . . . . . 11 𝐽 ∈ Top
12 kur14lem.x . . . . . . . . . . . 12 𝑋 = βˆͺ 𝐽
1312topopn 22729 . . . . . . . . . . 11 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
1411, 13ax-mp 5 . . . . . . . . . 10 𝑋 ∈ 𝐽
1514elexi 3486 . . . . . . . . 9 𝑋 ∈ V
16 kur14lem.a . . . . . . . . 9 𝐴 βŠ† 𝑋
1715, 16ssexi 5312 . . . . . . . 8 𝐴 ∈ V
1817tpid1 4764 . . . . . . 7 𝐴 ∈ {𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)}
1910, 18sselii 3971 . . . . . 6 𝐴 ∈ 𝑇
20 kur14lem.k . . . . . . . . 9 𝐾 = (clsβ€˜π½)
21 kur14lem.i . . . . . . . . 9 𝐼 = (intβ€˜π½)
22 kur14lem.b . . . . . . . . 9 𝐡 = (𝑋 βˆ– (πΎβ€˜π΄))
23 kur14lem.c . . . . . . . . 9 𝐢 = (πΎβ€˜(𝑋 βˆ– 𝐴))
24 kur14lem.d . . . . . . . . 9 𝐷 = (πΌβ€˜(πΎβ€˜π΄))
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 34658 . . . . . . . 8 (𝑦 ∈ 𝑇 β†’ (𝑦 βŠ† 𝑋 ∧ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇))
2625simprd 495 . . . . . . 7 (𝑦 ∈ 𝑇 β†’ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇)
2726rgen 3055 . . . . . 6 βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇
2825simpld 494 . . . . . . . . . 10 (𝑦 ∈ 𝑇 β†’ 𝑦 βŠ† 𝑋)
2915elpw2 5335 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 βŠ† 𝑋)
3028, 29sylibr 233 . . . . . . . . 9 (𝑦 ∈ 𝑇 β†’ 𝑦 ∈ 𝒫 𝑋)
3130ssriv 3978 . . . . . . . 8 𝑇 βŠ† 𝒫 𝑋
3215pwex 5368 . . . . . . . . 9 𝒫 𝑋 ∈ V
3332elpw2 5335 . . . . . . . 8 (𝑇 ∈ 𝒫 𝒫 𝑋 ↔ 𝑇 βŠ† 𝒫 𝑋)
3431, 33mpbir 230 . . . . . . 7 𝑇 ∈ 𝒫 𝒫 𝑋
35 eleq2 2814 . . . . . . . . . 10 (π‘₯ = 𝑇 β†’ (𝐴 ∈ π‘₯ ↔ 𝐴 ∈ 𝑇))
36 sseq2 4000 . . . . . . . . . . 11 (π‘₯ = 𝑇 β†’ ({(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯ ↔ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇))
3736raleqbi1dv 3325 . . . . . . . . . 10 (π‘₯ = 𝑇 β†’ (βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯ ↔ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇))
3835, 37anbi12d 630 . . . . . . . . 9 (π‘₯ = 𝑇 β†’ ((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) ↔ (𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇)))
39 eleq2 2814 . . . . . . . . 9 (π‘₯ = 𝑇 β†’ (𝑠 ∈ π‘₯ ↔ 𝑠 ∈ 𝑇))
4038, 39imbi12d 344 . . . . . . . 8 (π‘₯ = 𝑇 β†’ (((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) ↔ ((𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇) β†’ 𝑠 ∈ 𝑇)))
4140rspccv 3601 . . . . . . 7 (βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) β†’ (𝑇 ∈ 𝒫 𝒫 𝑋 β†’ ((𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇) β†’ 𝑠 ∈ 𝑇)))
4234, 41mpi 20 . . . . . 6 (βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) β†’ ((𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇) β†’ 𝑠 ∈ 𝑇))
4319, 27, 42mp2ani 695 . . . . 5 (βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) β†’ 𝑠 ∈ 𝑇)
443, 43sylbi 216 . . . 4 (𝑠 ∈ ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)} β†’ 𝑠 ∈ 𝑇)
4544ssriv 3978 . . 3 ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)} βŠ† 𝑇
461, 45eqsstri 4008 . 2 𝑆 βŠ† 𝑇
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 34659 . 2 (𝑇 ∈ Fin ∧ (β™―β€˜π‘‡) ≀ 14)
48 1nn0 12484 . . 3 1 ∈ β„•0
49 4nn0 12487 . . 3 4 ∈ β„•0
5048, 49deccl 12688 . 2 14 ∈ β„•0
5146, 47, 50hashsslei 14382 1 (𝑆 ∈ Fin ∧ (β™―β€˜π‘†) ≀ 14)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  {crab 3424   βˆ– cdif 3937   βˆͺ cun 3938   βŠ† wss 3940  π’« cpw 4594  {cpr 4622  {ctp 4624  βˆͺ cuni 4899  βˆ© cint 4940   class class class wbr 5138  β€˜cfv 6533  Fincfn 8934  1c1 11106   ≀ cle 11245  4c4 12265  cdc 12673  β™―chash 14286  Topctop 22716  intcnt 22842  clsccl 22843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-hash 14287  df-top 22717  df-cld 22844  df-ntr 22845  df-cls 22846
This theorem is referenced by:  kur14lem10  34661
  Copyright terms: Public domain W3C validator