Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Visualization version   GIF version

Theorem kur14lem9 31516
Description: Lemma for kur14 31518. Since the set 𝑇 is closed under closure and complement, it contains the minimal set 𝑆 as a subset, so 𝑆 also has at most 14 elements. (Indeed 𝑆 = 𝑇, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
kur14lem.c 𝐶 = (𝐾‘(𝑋𝐴))
kur14lem.d 𝐷 = (𝐼‘(𝐾𝐴))
kur14lem.t 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
kur14lem.s 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
Assertion
Ref Expression
kur14lem9 (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑦,𝑇   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑦)

Proof of Theorem kur14lem9
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
2 vex 3393 . . . . . 6 𝑠 ∈ V
32elintrab 4677 . . . . 5 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ↔ ∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥))
4 ssun1 3972 . . . . . . . 8 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})
5 ssun1 3972 . . . . . . . . 9 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})
6 ssun1 3972 . . . . . . . . . 10 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
7 kur14lem.t . . . . . . . . . 10 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
86, 7sseqtr4i 3832 . . . . . . . . 9 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ⊆ 𝑇
95, 8sstri 3804 . . . . . . . 8 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ⊆ 𝑇
104, 9sstri 3804 . . . . . . 7 {𝐴, (𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇
11 kur14lem.j . . . . . . . . . . 11 𝐽 ∈ Top
12 kur14lem.x . . . . . . . . . . . 12 𝑋 = 𝐽
1312topopn 20920 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝑋𝐽)
1411, 13ax-mp 5 . . . . . . . . . 10 𝑋𝐽
1514elexi 3406 . . . . . . . . 9 𝑋 ∈ V
16 kur14lem.a . . . . . . . . 9 𝐴𝑋
1715, 16ssexi 4995 . . . . . . . 8 𝐴 ∈ V
1817tpid1 4491 . . . . . . 7 𝐴 ∈ {𝐴, (𝑋𝐴), (𝐾𝐴)}
1910, 18sselii 3792 . . . . . 6 𝐴𝑇
20 kur14lem.k . . . . . . . . 9 𝐾 = (cls‘𝐽)
21 kur14lem.i . . . . . . . . 9 𝐼 = (int‘𝐽)
22 kur14lem.b . . . . . . . . 9 𝐵 = (𝑋 ∖ (𝐾𝐴))
23 kur14lem.c . . . . . . . . 9 𝐶 = (𝐾‘(𝑋𝐴))
24 kur14lem.d . . . . . . . . 9 𝐷 = (𝐼‘(𝐾𝐴))
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 31514 . . . . . . . 8 (𝑦𝑇 → (𝑦𝑋 ∧ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
2625simprd 485 . . . . . . 7 (𝑦𝑇 → {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)
2726rgen 3109 . . . . . 6 𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇
2825simpld 484 . . . . . . . . . 10 (𝑦𝑇𝑦𝑋)
2915elpw2 5017 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3028, 29sylibr 225 . . . . . . . . 9 (𝑦𝑇𝑦 ∈ 𝒫 𝑋)
3130ssriv 3799 . . . . . . . 8 𝑇 ⊆ 𝒫 𝑋
3215pwex 5047 . . . . . . . . 9 𝒫 𝑋 ∈ V
3332elpw2 5017 . . . . . . . 8 (𝑇 ∈ 𝒫 𝒫 𝑋𝑇 ⊆ 𝒫 𝑋)
3431, 33mpbir 222 . . . . . . 7 𝑇 ∈ 𝒫 𝒫 𝑋
35 eleq2 2873 . . . . . . . . . 10 (𝑥 = 𝑇 → (𝐴𝑥𝐴𝑇))
36 sseq2 3821 . . . . . . . . . . 11 (𝑥 = 𝑇 → ({(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3736raleqbi1dv 3334 . . . . . . . . . 10 (𝑥 = 𝑇 → (∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇))
3835, 37anbi12d 618 . . . . . . . . 9 (𝑥 = 𝑇 → ((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇)))
39 eleq2 2873 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑠𝑥𝑠𝑇))
4038, 39imbi12d 335 . . . . . . . 8 (𝑥 = 𝑇 → (((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) ↔ ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4140rspccv 3498 . . . . . . 7 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → (𝑇 ∈ 𝒫 𝒫 𝑋 → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇)))
4234, 41mpi 20 . . . . . 6 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → ((𝐴𝑇 ∧ ∀𝑦𝑇 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑇) → 𝑠𝑇))
4319, 27, 42mp2ani 681 . . . . 5 (∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) → 𝑠𝑥) → 𝑠𝑇)
443, 43sylbi 208 . . . 4 (𝑠 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} → 𝑠𝑇)
4544ssriv 3799 . . 3 {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ⊆ 𝑇
461, 45eqsstri 3829 . 2 𝑆𝑇
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 31515 . 2 (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ 14)
48 1nn0 11571 . . 3 1 ∈ ℕ0
49 4nn0 11574 . . 3 4 ∈ ℕ0
5048, 49deccl 11770 . 2 14 ∈ ℕ0
5146, 47, 50hashsslei 13426 1 (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2158  wral 3095  {crab 3099  cdif 3763  cun 3764  wss 3766  𝒫 cpw 4348  {cpr 4369  {ctp 4371   cuni 4626   cint 4665   class class class wbr 4840  cfv 6098  Fincfn 8189  1c1 10219  cle 10357  4c4 11354  cdc 11755  chash 13333  Topctop 20907  intcnt 21031  clsccl 21032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-oadd 7797  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-card 9045  df-cda 9272  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-nn 11303  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-xnn0 11626  df-z 11640  df-dec 11756  df-uz 11901  df-fz 12546  df-hash 13334  df-top 20908  df-cld 21033  df-ntr 21034  df-cls 21035
This theorem is referenced by:  kur14lem10  31517
  Copyright terms: Public domain W3C validator