Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem9 Structured version   Visualization version   GIF version

Theorem kur14lem9 34194
Description: Lemma for kur14 34196. Since the set 𝑇 is closed under closure and complement, it contains the minimal set 𝑆 as a subset, so 𝑆 also has at most 14 elements. (Indeed 𝑆 = 𝑇, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = βˆͺ 𝐽
kur14lem.k 𝐾 = (clsβ€˜π½)
kur14lem.i 𝐼 = (intβ€˜π½)
kur14lem.a 𝐴 βŠ† 𝑋
kur14lem.b 𝐡 = (𝑋 βˆ– (πΎβ€˜π΄))
kur14lem.c 𝐢 = (πΎβ€˜(𝑋 βˆ– 𝐴))
kur14lem.d 𝐷 = (πΌβ€˜(πΎβ€˜π΄))
kur14lem.t 𝑇 = ((({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βˆͺ ({(πΌβ€˜πΆ), (πΎβ€˜π·), (πΌβ€˜(πΎβ€˜π΅))} βˆͺ {(πΎβ€˜(πΌβ€˜πΆ)), (πΌβ€˜(πΎβ€˜(πΌβ€˜π΄)))}))
kur14lem.s 𝑆 = ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)}
Assertion
Ref Expression
kur14lem9 (𝑆 ∈ Fin ∧ (β™―β€˜π‘†) ≀ 14)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐾   π‘₯,𝑦,𝑇   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐡(π‘₯,𝑦)   𝐢(π‘₯,𝑦)   𝐷(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   𝐼(π‘₯,𝑦)   𝐽(π‘₯,𝑦)   𝐾(𝑦)

Proof of Theorem kur14lem9
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 kur14lem.s . . 3 𝑆 = ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)}
2 vex 3479 . . . . . 6 𝑠 ∈ V
32elintrab 4964 . . . . 5 (𝑠 ∈ ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)} ↔ βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯))
4 ssun1 4172 . . . . . . . 8 {𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βŠ† ({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)})
5 ssun1 4172 . . . . . . . . 9 ({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βŠ† (({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))})
6 ssun1 4172 . . . . . . . . . 10 (({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βŠ† ((({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βˆͺ ({(πΌβ€˜πΆ), (πΎβ€˜π·), (πΌβ€˜(πΎβ€˜π΅))} βˆͺ {(πΎβ€˜(πΌβ€˜πΆ)), (πΌβ€˜(πΎβ€˜(πΌβ€˜π΄)))}))
7 kur14lem.t . . . . . . . . . 10 𝑇 = ((({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βˆͺ ({(πΌβ€˜πΆ), (πΎβ€˜π·), (πΌβ€˜(πΎβ€˜π΅))} βˆͺ {(πΎβ€˜(πΌβ€˜πΆ)), (πΌβ€˜(πΎβ€˜(πΌβ€˜π΄)))}))
86, 7sseqtrri 4019 . . . . . . . . 9 (({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βˆͺ {(πΎβ€˜π΅), 𝐷, (πΎβ€˜(πΌβ€˜π΄))}) βŠ† 𝑇
95, 8sstri 3991 . . . . . . . 8 ({𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βˆͺ {𝐡, 𝐢, (πΌβ€˜π΄)}) βŠ† 𝑇
104, 9sstri 3991 . . . . . . 7 {𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)} βŠ† 𝑇
11 kur14lem.j . . . . . . . . . . 11 𝐽 ∈ Top
12 kur14lem.x . . . . . . . . . . . 12 𝑋 = βˆͺ 𝐽
1312topopn 22400 . . . . . . . . . . 11 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
1411, 13ax-mp 5 . . . . . . . . . 10 𝑋 ∈ 𝐽
1514elexi 3494 . . . . . . . . 9 𝑋 ∈ V
16 kur14lem.a . . . . . . . . 9 𝐴 βŠ† 𝑋
1715, 16ssexi 5322 . . . . . . . 8 𝐴 ∈ V
1817tpid1 4772 . . . . . . 7 𝐴 ∈ {𝐴, (𝑋 βˆ– 𝐴), (πΎβ€˜π΄)}
1910, 18sselii 3979 . . . . . 6 𝐴 ∈ 𝑇
20 kur14lem.k . . . . . . . . 9 𝐾 = (clsβ€˜π½)
21 kur14lem.i . . . . . . . . 9 𝐼 = (intβ€˜π½)
22 kur14lem.b . . . . . . . . 9 𝐡 = (𝑋 βˆ– (πΎβ€˜π΄))
23 kur14lem.c . . . . . . . . 9 𝐢 = (πΎβ€˜(𝑋 βˆ– 𝐴))
24 kur14lem.d . . . . . . . . 9 𝐷 = (πΌβ€˜(πΎβ€˜π΄))
2511, 12, 20, 21, 16, 22, 23, 24, 7kur14lem7 34192 . . . . . . . 8 (𝑦 ∈ 𝑇 β†’ (𝑦 βŠ† 𝑋 ∧ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇))
2625simprd 497 . . . . . . 7 (𝑦 ∈ 𝑇 β†’ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇)
2726rgen 3064 . . . . . 6 βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇
2825simpld 496 . . . . . . . . . 10 (𝑦 ∈ 𝑇 β†’ 𝑦 βŠ† 𝑋)
2915elpw2 5345 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 βŠ† 𝑋)
3028, 29sylibr 233 . . . . . . . . 9 (𝑦 ∈ 𝑇 β†’ 𝑦 ∈ 𝒫 𝑋)
3130ssriv 3986 . . . . . . . 8 𝑇 βŠ† 𝒫 𝑋
3215pwex 5378 . . . . . . . . 9 𝒫 𝑋 ∈ V
3332elpw2 5345 . . . . . . . 8 (𝑇 ∈ 𝒫 𝒫 𝑋 ↔ 𝑇 βŠ† 𝒫 𝑋)
3431, 33mpbir 230 . . . . . . 7 𝑇 ∈ 𝒫 𝒫 𝑋
35 eleq2 2823 . . . . . . . . . 10 (π‘₯ = 𝑇 β†’ (𝐴 ∈ π‘₯ ↔ 𝐴 ∈ 𝑇))
36 sseq2 4008 . . . . . . . . . . 11 (π‘₯ = 𝑇 β†’ ({(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯ ↔ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇))
3736raleqbi1dv 3334 . . . . . . . . . 10 (π‘₯ = 𝑇 β†’ (βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯ ↔ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇))
3835, 37anbi12d 632 . . . . . . . . 9 (π‘₯ = 𝑇 β†’ ((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) ↔ (𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇)))
39 eleq2 2823 . . . . . . . . 9 (π‘₯ = 𝑇 β†’ (𝑠 ∈ π‘₯ ↔ 𝑠 ∈ 𝑇))
4038, 39imbi12d 345 . . . . . . . 8 (π‘₯ = 𝑇 β†’ (((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) ↔ ((𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇) β†’ 𝑠 ∈ 𝑇)))
4140rspccv 3610 . . . . . . 7 (βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) β†’ (𝑇 ∈ 𝒫 𝒫 𝑋 β†’ ((𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇) β†’ 𝑠 ∈ 𝑇)))
4234, 41mpi 20 . . . . . 6 (βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) β†’ ((𝐴 ∈ 𝑇 ∧ βˆ€π‘¦ ∈ 𝑇 {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† 𝑇) β†’ 𝑠 ∈ 𝑇))
4319, 27, 42mp2ani 697 . . . . 5 (βˆ€π‘₯ ∈ 𝒫 𝒫 𝑋((𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯) β†’ 𝑠 ∈ π‘₯) β†’ 𝑠 ∈ 𝑇)
443, 43sylbi 216 . . . 4 (𝑠 ∈ ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)} β†’ 𝑠 ∈ 𝑇)
4544ssriv 3986 . . 3 ∩ {π‘₯ ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ {(𝑋 βˆ– 𝑦), (πΎβ€˜π‘¦)} βŠ† π‘₯)} βŠ† 𝑇
461, 45eqsstri 4016 . 2 𝑆 βŠ† 𝑇
4711, 12, 20, 21, 16, 22, 23, 24, 7kur14lem8 34193 . 2 (𝑇 ∈ Fin ∧ (β™―β€˜π‘‡) ≀ 14)
48 1nn0 12485 . . 3 1 ∈ β„•0
49 4nn0 12488 . . 3 4 ∈ β„•0
5048, 49deccl 12689 . 2 14 ∈ β„•0
5146, 47, 50hashsslei 14383 1 (𝑆 ∈ Fin ∧ (β™―β€˜π‘†) ≀ 14)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433   βˆ– cdif 3945   βˆͺ cun 3946   βŠ† wss 3948  π’« cpw 4602  {cpr 4630  {ctp 4632  βˆͺ cuni 4908  βˆ© cint 4950   class class class wbr 5148  β€˜cfv 6541  Fincfn 8936  1c1 11108   ≀ cle 11246  4c4 12266  cdc 12674  β™―chash 14287  Topctop 22387  intcnt 22513  clsccl 22514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-oadd 8467  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-xnn0 12542  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-hash 14288  df-top 22388  df-cld 22515  df-ntr 22516  df-cls 22517
This theorem is referenced by:  kur14lem10  34195
  Copyright terms: Public domain W3C validator