Step | Hyp | Ref
| Expression |
1 | | kur14lem.s |
. . 3
⊢ 𝑆 = ∩
{𝑥 ∈ 𝒫
𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} |
2 | | vex 3436 |
. . . . . 6
⊢ 𝑠 ∈ V |
3 | 2 | elintrab 4891 |
. . . . 5
⊢ (𝑠 ∈ ∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ↔ ∀𝑥 ∈ 𝒫 𝒫 𝑋((𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) → 𝑠 ∈ 𝑥)) |
4 | | ssun1 4106 |
. . . . . . . 8
⊢ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) |
5 | | ssun1 4106 |
. . . . . . . . 9
⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ⊆ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) |
6 | | ssun1 4106 |
. . . . . . . . . 10
⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ⊆ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
7 | | kur14lem.t |
. . . . . . . . . 10
⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
8 | 6, 7 | sseqtrri 3958 |
. . . . . . . . 9
⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ⊆ 𝑇 |
9 | 5, 8 | sstri 3930 |
. . . . . . . 8
⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ⊆ 𝑇 |
10 | 4, 9 | sstri 3930 |
. . . . . . 7
⊢ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇 |
11 | | kur14lem.j |
. . . . . . . . . . 11
⊢ 𝐽 ∈ Top |
12 | | kur14lem.x |
. . . . . . . . . . . 12
⊢ 𝑋 = ∪
𝐽 |
13 | 12 | topopn 22055 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
14 | 11, 13 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝑋 ∈ 𝐽 |
15 | 14 | elexi 3451 |
. . . . . . . . 9
⊢ 𝑋 ∈ V |
16 | | kur14lem.a |
. . . . . . . . 9
⊢ 𝐴 ⊆ 𝑋 |
17 | 15, 16 | ssexi 5246 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
18 | 17 | tpid1 4704 |
. . . . . . 7
⊢ 𝐴 ∈ {𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} |
19 | 10, 18 | sselii 3918 |
. . . . . 6
⊢ 𝐴 ∈ 𝑇 |
20 | | kur14lem.k |
. . . . . . . . 9
⊢ 𝐾 = (cls‘𝐽) |
21 | | kur14lem.i |
. . . . . . . . 9
⊢ 𝐼 = (int‘𝐽) |
22 | | kur14lem.b |
. . . . . . . . 9
⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
23 | | kur14lem.c |
. . . . . . . . 9
⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) |
24 | | kur14lem.d |
. . . . . . . . 9
⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) |
25 | 11, 12, 20, 21, 16, 22, 23, 24, 7 | kur14lem7 33174 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑇 → (𝑦 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇)) |
26 | 25 | simprd 496 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑇 → {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇) |
27 | 26 | rgen 3074 |
. . . . . 6
⊢
∀𝑦 ∈
𝑇 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇 |
28 | 25 | simpld 495 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑇 → 𝑦 ⊆ 𝑋) |
29 | 15 | elpw2 5269 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋) |
30 | 28, 29 | sylibr 233 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑇 → 𝑦 ∈ 𝒫 𝑋) |
31 | 30 | ssriv 3925 |
. . . . . . . 8
⊢ 𝑇 ⊆ 𝒫 𝑋 |
32 | 15 | pwex 5303 |
. . . . . . . . 9
⊢ 𝒫
𝑋 ∈ V |
33 | 32 | elpw2 5269 |
. . . . . . . 8
⊢ (𝑇 ∈ 𝒫 𝒫
𝑋 ↔ 𝑇 ⊆ 𝒫 𝑋) |
34 | 31, 33 | mpbir 230 |
. . . . . . 7
⊢ 𝑇 ∈ 𝒫 𝒫
𝑋 |
35 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑇 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑇)) |
36 | | sseq2 3947 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑇 → ({(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥 ↔ {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇)) |
37 | 36 | raleqbi1dv 3340 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑇 → (∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑇 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇)) |
38 | 35, 37 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑥 = 𝑇 → ((𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) ↔ (𝐴 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇))) |
39 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = 𝑇 → (𝑠 ∈ 𝑥 ↔ 𝑠 ∈ 𝑇)) |
40 | 38, 39 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑥 = 𝑇 → (((𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) → 𝑠 ∈ 𝑥) ↔ ((𝐴 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇) → 𝑠 ∈ 𝑇))) |
41 | 40 | rspccv 3558 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝒫 𝒫 𝑋((𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) → 𝑠 ∈ 𝑥) → (𝑇 ∈ 𝒫 𝒫 𝑋 → ((𝐴 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇) → 𝑠 ∈ 𝑇))) |
42 | 34, 41 | mpi 20 |
. . . . . 6
⊢
(∀𝑥 ∈
𝒫 𝒫 𝑋((𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) → 𝑠 ∈ 𝑥) → ((𝐴 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑇) → 𝑠 ∈ 𝑇)) |
43 | 19, 27, 42 | mp2ani 695 |
. . . . 5
⊢
(∀𝑥 ∈
𝒫 𝒫 𝑋((𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥) → 𝑠 ∈ 𝑥) → 𝑠 ∈ 𝑇) |
44 | 3, 43 | sylbi 216 |
. . . 4
⊢ (𝑠 ∈ ∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} → 𝑠 ∈ 𝑇) |
45 | 44 | ssriv 3925 |
. . 3
⊢ ∩ {𝑥
∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ⊆ 𝑇 |
46 | 1, 45 | eqsstri 3955 |
. 2
⊢ 𝑆 ⊆ 𝑇 |
47 | 11, 12, 20, 21, 16, 22, 23, 24, 7 | kur14lem8 33175 |
. 2
⊢ (𝑇 ∈ Fin ∧
(♯‘𝑇) ≤
;14) |
48 | | 1nn0 12249 |
. . 3
⊢ 1 ∈
ℕ0 |
49 | | 4nn0 12252 |
. . 3
⊢ 4 ∈
ℕ0 |
50 | 48, 49 | deccl 12452 |
. 2
⊢ ;14 ∈
ℕ0 |
51 | 46, 47, 50 | hashsslei 14141 |
1
⊢ (𝑆 ∈ Fin ∧
(♯‘𝑆) ≤
;14) |