![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpan2i.1 | ⊢ 𝜒 |
mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpan2d 693 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: tcwf 9952 cflecard 10322 01sqrexlem7 15297 setciso 18158 lsmss1 19707 rngciso 20660 ringciso 20694 sincosq1lem 26557 pjcompi 31704 mdsl1i 32353 dfon2lem3 35749 dfon2lem7 35753 tan2h 37572 dvasin 37664 ismrc 42657 nnsum4primes4 47663 nnsum4primesprm 47665 nnsum4primesgbe 47667 nnsum4primesle9 47669 rngcisoALTV 48000 ringcisoALTV 48034 aacllem 48895 |
Copyright terms: Public domain | W3C validator |