| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpan2i.1 | ⊢ 𝜒 |
| mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpan2d 694 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: tcwf 9798 cflecard 10166 01sqrexlem7 15173 setciso 18016 lsmss1 19562 rngciso 20541 ringciso 20575 sincosq1lem 26422 pjcompi 31634 mdsl1i 32283 dfon2lem3 35761 dfon2lem7 35765 tan2h 37594 dvasin 37686 ismrc 42677 nnsum4primes4 47777 nnsum4primesprm 47779 nnsum4primesgbe 47781 nnsum4primesle9 47783 rngcisoALTV 48265 ringcisoALTV 48299 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |