| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpan2i.1 | ⊢ 𝜒 |
| mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpan2d 694 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: tcwf 9836 cflecard 10206 01sqrexlem7 15214 setciso 18053 lsmss1 19595 rngciso 20547 ringciso 20581 sincosq1lem 26406 pjcompi 31601 mdsl1i 32250 dfon2lem3 35773 dfon2lem7 35777 tan2h 37606 dvasin 37698 ismrc 42689 nnsum4primes4 47790 nnsum4primesprm 47792 nnsum4primesgbe 47794 nnsum4primesle9 47796 rngcisoALTV 48265 ringcisoALTV 48299 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |