MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpan2i Structured version   Visualization version   GIF version

Theorem mpan2i 697
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpan2i.1 𝜒
mpan2i.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpan2i (𝜑 → (𝜓𝜃))

Proof of Theorem mpan2i
StepHypRef Expression
1 mpan2i.1 . . 3 𝜒
21a1i 11 . 2 (𝜑𝜒)
3 mpan2i.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpan2d 694 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  tcwf  9798  cflecard  10166  01sqrexlem7  15173  setciso  18016  lsmss1  19562  rngciso  20541  ringciso  20575  sincosq1lem  26422  pjcompi  31634  mdsl1i  32283  dfon2lem3  35761  dfon2lem7  35765  tan2h  37594  dvasin  37686  ismrc  42677  nnsum4primes4  47777  nnsum4primesprm  47779  nnsum4primesgbe  47781  nnsum4primesle9  47783  rngcisoALTV  48265  ringcisoALTV  48299  aacllem  49790
  Copyright terms: Public domain W3C validator