| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpan2i.1 | ⊢ 𝜒 |
| mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpan2d 694 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: tcwf 9776 cflecard 10144 01sqrexlem7 15155 setciso 17998 lsmss1 19578 rngciso 20554 ringciso 20588 sincosq1lem 26434 pjcompi 31650 mdsl1i 32299 dfon2lem3 35825 dfon2lem7 35829 tan2h 37658 dvasin 37750 ismrc 42740 nnsum4primes4 47826 nnsum4primesprm 47828 nnsum4primesgbe 47830 nnsum4primesle9 47832 rngcisoALTV 48314 ringcisoALTV 48348 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |