| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpan2i.1 | ⊢ 𝜒 |
| mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpan2d 694 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: tcwf 9785 cflecard 10153 01sqrexlem7 15159 setciso 18002 lsmss1 19581 rngciso 20557 ringciso 20591 sincosq1lem 26436 pjcompi 31656 mdsl1i 32305 dfon2lem3 35850 dfon2lem7 35854 tan2h 37675 dvasin 37767 ismrc 42821 nnsum4primes4 47916 nnsum4primesprm 47918 nnsum4primesgbe 47920 nnsum4primesle9 47922 rngcisoALTV 48404 ringcisoALTV 48438 aacllem 49929 |
| Copyright terms: Public domain | W3C validator |