Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpan2i.1 | ⊢ 𝜒 |
mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpan2d 693 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: tcwf 9345 cflecard 9713 sqrlem7 14656 setciso 17417 lsmss1 18858 sincosq1lem 25189 pjcompi 29554 mdsl1i 30203 dfon2lem3 33277 dfon2lem7 33281 tan2h 35351 dvasin 35443 ismrc 40037 nnsum4primes4 44696 nnsum4primesprm 44698 nnsum4primesgbe 44700 nnsum4primesle9 44702 rngciso 44995 rngcisoALTV 45007 ringciso 45046 ringcisoALTV 45070 aacllem 45742 |
Copyright terms: Public domain | W3C validator |