MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpan2i Structured version   Visualization version   GIF version

Theorem mpan2i 697
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpan2i.1 𝜒
mpan2i.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpan2i (𝜑 → (𝜓𝜃))

Proof of Theorem mpan2i
StepHypRef Expression
1 mpan2i.1 . . 3 𝜒
21a1i 11 . 2 (𝜑𝜒)
3 mpan2i.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpan2d 694 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  tcwf  9843  cflecard  10213  01sqrexlem7  15221  setciso  18060  lsmss1  19602  rngciso  20554  ringciso  20588  sincosq1lem  26413  pjcompi  31608  mdsl1i  32257  dfon2lem3  35780  dfon2lem7  35784  tan2h  37613  dvasin  37705  ismrc  42696  nnsum4primes4  47794  nnsum4primesprm  47796  nnsum4primesgbe  47798  nnsum4primesle9  47800  rngcisoALTV  48269  ringcisoALTV  48303  aacllem  49794
  Copyright terms: Public domain W3C validator