Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpan2i.1 | ⊢ 𝜒 |
mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpan2d 690 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: tcwf 9572 cflecard 9940 sqrlem7 14888 setciso 17722 lsmss1 19186 sincosq1lem 25559 pjcompi 29935 mdsl1i 30584 dfon2lem3 33667 dfon2lem7 33671 tan2h 35696 dvasin 35788 ismrc 40439 nnsum4primes4 45129 nnsum4primesprm 45131 nnsum4primesgbe 45133 nnsum4primesle9 45135 rngciso 45428 rngcisoALTV 45440 ringciso 45479 ringcisoALTV 45503 aacllem 46391 |
Copyright terms: Public domain | W3C validator |