| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpan2i.1 | ⊢ 𝜒 |
| mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 4 | 2, 3 | mpan2d 694 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: tcwf 9843 cflecard 10213 01sqrexlem7 15221 setciso 18060 lsmss1 19602 rngciso 20554 ringciso 20588 sincosq1lem 26413 pjcompi 31608 mdsl1i 32257 dfon2lem3 35780 dfon2lem7 35784 tan2h 37613 dvasin 37705 ismrc 42696 nnsum4primes4 47794 nnsum4primesprm 47796 nnsum4primesgbe 47798 nnsum4primesle9 47800 rngcisoALTV 48269 ringcisoALTV 48303 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |