Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpan2i.1 | ⊢ 𝜒 |
mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpan2d 691 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: tcwf 9641 cflecard 10009 sqrlem7 14960 setciso 17806 lsmss1 19271 sincosq1lem 25654 pjcompi 30034 mdsl1i 30683 dfon2lem3 33761 dfon2lem7 33765 tan2h 35769 dvasin 35861 ismrc 40523 nnsum4primes4 45241 nnsum4primesprm 45243 nnsum4primesgbe 45245 nnsum4primesle9 45247 rngciso 45540 rngcisoALTV 45552 ringciso 45591 ringcisoALTV 45615 aacllem 46505 |
Copyright terms: Public domain | W3C validator |