Step | Hyp | Ref
| Expression |
1 | | trclexlem 14705 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) |
2 | | ssun1 4106 |
. . 3
⊢ 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
3 | | relcnv 6012 |
. . . . . . . . . . . . . 14
⊢ Rel ◡𝑅 |
4 | | relssdmrn 6172 |
. . . . . . . . . . . . . 14
⊢ (Rel
◡𝑅 → ◡𝑅 ⊆ (dom ◡𝑅 × ran ◡𝑅)) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ◡𝑅 ⊆ (dom ◡𝑅 × ran ◡𝑅) |
6 | | ssequn1 4114 |
. . . . . . . . . . . . 13
⊢ (◡𝑅 ⊆ (dom ◡𝑅 × ran ◡𝑅) ↔ (◡𝑅 ∪ (dom ◡𝑅 × ran ◡𝑅)) = (dom ◡𝑅 × ran ◡𝑅)) |
7 | 5, 6 | mpbi 229 |
. . . . . . . . . . . 12
⊢ (◡𝑅 ∪ (dom ◡𝑅 × ran ◡𝑅)) = (dom ◡𝑅 × ran ◡𝑅) |
8 | | cnvun 6046 |
. . . . . . . . . . . . 13
⊢ ◡(𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (◡𝑅 ∪ ◡(dom 𝑅 × ran 𝑅)) |
9 | | cnvxp 6060 |
. . . . . . . . . . . . . . 15
⊢ ◡(dom 𝑅 × ran 𝑅) = (ran 𝑅 × dom 𝑅) |
10 | | df-rn 5600 |
. . . . . . . . . . . . . . . 16
⊢ ran 𝑅 = dom ◡𝑅 |
11 | | dfdm4 5804 |
. . . . . . . . . . . . . . . 16
⊢ dom 𝑅 = ran ◡𝑅 |
12 | 10, 11 | xpeq12i 5617 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑅 × dom 𝑅) = (dom ◡𝑅 × ran ◡𝑅) |
13 | 9, 12 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ ◡(dom 𝑅 × ran 𝑅) = (dom ◡𝑅 × ran ◡𝑅) |
14 | 13 | uneq2i 4094 |
. . . . . . . . . . . . 13
⊢ (◡𝑅 ∪ ◡(dom 𝑅 × ran 𝑅)) = (◡𝑅 ∪ (dom ◡𝑅 × ran ◡𝑅)) |
15 | 8, 14 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ ◡(𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (◡𝑅 ∪ (dom ◡𝑅 × ran ◡𝑅)) |
16 | 7, 15, 13 | 3eqtr4i 2776 |
. . . . . . . . . . 11
⊢ ◡(𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ◡(dom 𝑅 × ran 𝑅) |
17 | 16 | breqi 5080 |
. . . . . . . . . 10
⊢ (𝑏◡(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎 ↔ 𝑏◡(dom
𝑅 × ran 𝑅)𝑎) |
18 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
19 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑎 ∈ V |
20 | 18, 19 | brcnv 5791 |
. . . . . . . . . 10
⊢ (𝑏◡(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎 ↔ 𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏) |
21 | 18, 19 | brcnv 5791 |
. . . . . . . . . 10
⊢ (𝑏◡(dom 𝑅 × ran 𝑅)𝑎 ↔ 𝑎(dom 𝑅 × ran 𝑅)𝑏) |
22 | 17, 20, 21 | 3bitr3i 301 |
. . . . . . . . 9
⊢ (𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ↔ 𝑎(dom 𝑅 × ran 𝑅)𝑏) |
23 | 16 | breqi 5080 |
. . . . . . . . . 10
⊢ (𝑐◡(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ↔ 𝑐◡(dom
𝑅 × ran 𝑅)𝑏) |
24 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
25 | 24, 18 | brcnv 5791 |
. . . . . . . . . 10
⊢ (𝑐◡(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ↔ 𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) |
26 | 24, 18 | brcnv 5791 |
. . . . . . . . . 10
⊢ (𝑐◡(dom 𝑅 × ran 𝑅)𝑏 ↔ 𝑏(dom 𝑅 × ran 𝑅)𝑐) |
27 | 23, 25, 26 | 3bitr3i 301 |
. . . . . . . . 9
⊢ (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐 ↔ 𝑏(dom 𝑅 × ran 𝑅)𝑐) |
28 | 22, 27 | anbi12i 627 |
. . . . . . . 8
⊢ ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ∧ 𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) ↔ (𝑎(dom 𝑅 × ran 𝑅)𝑏 ∧ 𝑏(dom 𝑅 × ran 𝑅)𝑐)) |
29 | 28 | biimpi 215 |
. . . . . . 7
⊢ ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ∧ 𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → (𝑎(dom 𝑅 × ran 𝑅)𝑏 ∧ 𝑏(dom 𝑅 × ran 𝑅)𝑐)) |
30 | 29 | eximi 1837 |
. . . . . 6
⊢
(∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ∧ 𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏 ∧ 𝑏(dom 𝑅 × ran 𝑅)𝑐)) |
31 | 30 | ssopab2i 5463 |
. . . . 5
⊢
{〈𝑎, 𝑐〉 ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ∧ 𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)} ⊆ {〈𝑎, 𝑐〉 ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏 ∧ 𝑏(dom 𝑅 × ran 𝑅)𝑐)} |
32 | | df-co 5598 |
. . . . 5
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = {〈𝑎, 𝑐〉 ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏 ∧ 𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)} |
33 | | df-co 5598 |
. . . . 5
⊢ ((dom
𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = {〈𝑎, 𝑐〉 ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏 ∧ 𝑏(dom 𝑅 × ran 𝑅)𝑐)} |
34 | 31, 32, 33 | 3sstr4i 3964 |
. . . 4
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) |
35 | | xptrrel 14691 |
. . . . 5
⊢ ((dom
𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅) |
36 | | ssun2 4107 |
. . . . 5
⊢ (dom
𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
37 | 35, 36 | sstri 3930 |
. . . 4
⊢ ((dom
𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
38 | 34, 37 | sstri 3930 |
. . 3
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) |
39 | | trcleq2lem 14702 |
. . . . 5
⊢ (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))) |
40 | 39 | elabg 3607 |
. . . 4
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))) |
41 | 40 | biimprd 247 |
. . 3
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)})) |
42 | 2, 38, 41 | mp2ani 695 |
. 2
⊢ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
43 | 1, 42 | syl 17 |
1
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |