Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclublem Structured version   Visualization version   GIF version

Theorem trclublem 14346
 Description: If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclublem (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem trclublem
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trclexlem 14345 . 2 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
2 ssun1 4123 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3 relcnv 5945 . . . . . . . . . . . . . 14 Rel 𝑅
4 relssdmrn 6099 . . . . . . . . . . . . . 14 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
53, 4ax-mp 5 . . . . . . . . . . . . 13 𝑅 ⊆ (dom 𝑅 × ran 𝑅)
6 ssequn1 4131 . . . . . . . . . . . . 13 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
75, 6mpbi 233 . . . . . . . . . . . 12 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
8 cnvun 5979 . . . . . . . . . . . . 13 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (𝑅(dom 𝑅 × ran 𝑅))
9 cnvxp 5992 . . . . . . . . . . . . . . 15 (dom 𝑅 × ran 𝑅) = (ran 𝑅 × dom 𝑅)
10 df-rn 5543 . . . . . . . . . . . . . . . 16 ran 𝑅 = dom 𝑅
11 dfdm4 5741 . . . . . . . . . . . . . . . 16 dom 𝑅 = ran 𝑅
1210, 11xpeq12i 5560 . . . . . . . . . . . . . . 15 (ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅)
139, 12eqtri 2845 . . . . . . . . . . . . . 14 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1413uneq2i 4111 . . . . . . . . . . . . 13 (𝑅(dom 𝑅 × ran 𝑅)) = (𝑅 ∪ (dom 𝑅 × ran 𝑅))
158, 14eqtri 2845 . . . . . . . . . . . 12 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (𝑅 ∪ (dom 𝑅 × ran 𝑅))
167, 15, 133eqtr4i 2855 . . . . . . . . . . 11 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
1716breqi 5048 . . . . . . . . . 10 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎𝑏(dom 𝑅 × ran 𝑅)𝑎)
18 vex 3472 . . . . . . . . . . 11 𝑏 ∈ V
19 vex 3472 . . . . . . . . . . 11 𝑎 ∈ V
2018, 19brcnv 5730 . . . . . . . . . 10 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏)
2118, 19brcnv 5730 . . . . . . . . . 10 (𝑏(dom 𝑅 × ran 𝑅)𝑎𝑎(dom 𝑅 × ran 𝑅)𝑏)
2217, 20, 213bitr3i 304 . . . . . . . . 9 (𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑎(dom 𝑅 × ran 𝑅)𝑏)
2316breqi 5048 . . . . . . . . . 10 (𝑐(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑐(dom 𝑅 × ran 𝑅)𝑏)
24 vex 3472 . . . . . . . . . . 11 𝑐 ∈ V
2524, 18brcnv 5730 . . . . . . . . . 10 (𝑐(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)
2624, 18brcnv 5730 . . . . . . . . . 10 (𝑐(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)
2723, 25, 263bitr3i 304 . . . . . . . . 9 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐𝑏(dom 𝑅 × ran 𝑅)𝑐)
2822, 27anbi12i 629 . . . . . . . 8 ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) ↔ (𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
2928biimpi 219 . . . . . . 7 ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → (𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
3029eximi 1836 . . . . . 6 (∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
3130ssopab2i 5414 . . . . 5 {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)} ⊆ {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)}
32 df-co 5541 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)}
33 df-co 5541 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)}
3431, 32, 333sstr4i 3985 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
35 xptrrel 14331 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
36 ssun2 4124 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3735, 36sstri 3951 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3834, 37sstri 3951 . . 3 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
39 trcleq2lem 14342 . . . . 5 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))))
4039elabg 3641 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))))
4140biimprd 251 . . 3 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}))
422, 38, 41mp2ani 697 . 2 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
431, 42syl 17 1 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2114  {cab 2800  Vcvv 3469   ∪ cun 3906   ⊆ wss 3908   class class class wbr 5042  {copab 5104   × cxp 5530  ◡ccnv 5531  dom cdm 5532  ran crn 5533   ∘ ccom 5536  Rel wrel 5537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544 This theorem is referenced by:  trclubi  14347  trclubgi  14348  trclub  14349  trclubg  14350
 Copyright terms: Public domain W3C validator