| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 4511 |
. . . . . . . . 9
⊢ (𝐴 < 0 → if(𝐴 < 0, -1, 1) =
-1) |
| 2 | 1 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1) |
| 3 | 2 | oveq1d 7425 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))) |
| 4 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (if(𝑁 < 0, -1, 1) = -1 → (-1
· if(𝑁 < 0, -1,
1)) = (-1 · -1)) |
| 5 | | neg1mulneg1e1 12458 |
. . . . . . . . . 10
⊢ (-1
· -1) = 1 |
| 6 | 4, 5 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (if(𝑁 < 0, -1, 1) = -1 → (-1
· if(𝑁 < 0, -1,
1)) = 1) |
| 7 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (if(𝑁 < 0, -1, 1) = 1 → (-1
· if(𝑁 < 0, -1,
1)) = (-1 · 1)) |
| 8 | | ax-1cn 11192 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
| 9 | 8 | mulm1i 11687 |
. . . . . . . . . 10
⊢ (-1
· 1) = -1 |
| 10 | 7, 9 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (if(𝑁 < 0, -1, 1) = 1 → (-1
· if(𝑁 < 0, -1,
1)) = -1) |
| 11 | 6, 10 | ifsb 4519 |
. . . . . . . 8
⊢ (-1
· if(𝑁 < 0, -1,
1)) = if(𝑁 < 0, 1,
-1) |
| 12 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝐴 < 0) |
| 13 | 12 | biantrud 531 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0))) |
| 14 | 13 | ifbid 4529 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
| 15 | 14 | oveq2d 7426 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if(𝑁 < 0, -1, 1)) = (-1 ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1,
1))) |
| 16 | | simpl3 1194 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ≠ 0) |
| 17 | 16 | necomd 2988 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 0 ≠ 𝑁) |
| 18 | | simpl2 1193 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℤ) |
| 19 | 18 | zred 12702 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℝ) |
| 20 | | 0re 11242 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 21 | | ltlen 11341 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 < 0
↔ (𝑁 ≤ 0 ∧ 0
≠ 𝑁))) |
| 22 | 19, 20, 21 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
| 23 | 17, 22 | mpbiran2d 708 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ 𝑁 ≤ 0)) |
| 24 | 19 | le0neg1d 11813 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
| 25 | 19 | renegcld 11669 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → -𝑁 ∈ ℝ) |
| 26 | | lenlt 11318 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝑁
∈ ℝ) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0)) |
| 27 | 20, 25, 26 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0)) |
| 28 | 23, 24, 27 | 3bitrd 305 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ ¬ -𝑁 < 0)) |
| 29 | 28 | ifbid 4529 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(¬ -𝑁 < 0, 1,
-1)) |
| 30 | | ifnot 4558 |
. . . . . . . . 9
⊢ if(¬
-𝑁 < 0, 1, -1) =
if(-𝑁 < 0, -1,
1) |
| 31 | 29, 30 | eqtrdi 2787 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1)) |
| 32 | 11, 15, 31 | 3eqtr3a 2795 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if(-𝑁 < 0, -1, 1)) |
| 33 | 12 | biantrud 531 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-𝑁 < 0 ↔ (-𝑁 < 0 ∧ 𝐴 < 0))) |
| 34 | 33 | ifbid 4529 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(-𝑁 < 0, -1, 1) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
| 35 | 3, 32, 34 | 3eqtrd 2775 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
| 36 | | 1t1e1 12407 |
. . . . . . 7
⊢ (1
· 1) = 1 |
| 37 | | iffalse 4514 |
. . . . . . . . 9
⊢ (¬
𝐴 < 0 → if(𝐴 < 0, -1, 1) =
1) |
| 38 | 37 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) =
1) |
| 39 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0) |
| 40 | 39 | intnand 488 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) |
| 41 | 40 | iffalsed 4516 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
| 42 | 38, 41 | oveq12d 7428 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (1 ·
1)) |
| 43 | 39 | intnand 488 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (-𝑁 < 0 ∧ 𝐴 < 0)) |
| 44 | 43 | iffalsed 4516 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
| 45 | 36, 42, 44 | 3eqtr4a 2797 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
| 46 | 35, 45 | pm2.61dan 812 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
| 47 | 46 | eqcomd 2742 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))) |
| 48 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈
ℙ) |
| 49 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℤ) |
| 50 | | zq 12975 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℚ) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℚ) |
| 52 | | pcneg 16899 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁)) |
| 53 | 48, 51, 52 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁)) |
| 54 | 53 | oveq2d 7426 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁))) |
| 55 | 54 | ifeq1da 4537 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
| 56 | 55 | mpteq2dv 5220 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) |
| 57 | 56 | seqeq3d 14032 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))) |
| 58 | | zcn 12598 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 59 | 58 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈
ℂ) |
| 60 | 59 | absnegd 15473 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
(abs‘-𝑁) =
(abs‘𝑁)) |
| 61 | 57, 60 | fveq12d 6888 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) |
| 62 | 47, 61 | oveq12d 7428 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = ((if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
| 63 | | neg1cn 12359 |
. . . . . 6
⊢ -1 ∈
ℂ |
| 64 | 63, 8 | ifcli 4553 |
. . . . 5
⊢ if(𝐴 < 0, -1, 1) ∈
ℂ |
| 65 | 64 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) ∈
ℂ) |
| 66 | 63, 8 | ifcli 4553 |
. . . . 5
⊢ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ |
| 67 | 66 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ) |
| 68 | | nnabscl 15349 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
| 69 | 68 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
| 70 | | nnuz 12900 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 71 | 69, 70 | eleqtrdi 2845 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
(ℤ≥‘1)) |
| 72 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
| 73 | 72 | lgsfcl3 27286 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) |
| 74 | | elfznn 13575 |
. . . . . . 7
⊢ (𝑥 ∈ (1...(abs‘𝑁)) → 𝑥 ∈ ℕ) |
| 75 | | ffvelcdm 7076 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ) |
| 76 | 73, 74, 75 | syl2an 596 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑥 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ) |
| 77 | | zmulcl 12646 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) |
| 78 | 77 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
| 79 | 71, 76, 78 | seqcl 14045 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ) |
| 80 | 79 | zcnd 12703 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ) |
| 81 | 65, 67, 80 | mulassd 11263 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) ·
(seq1( · , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
| 82 | 62, 81 | eqtrd 2771 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
| 83 | | simp1 1136 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈
ℤ) |
| 84 | | znegcl 12632 |
. . . 4
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
| 85 | 84 | 3ad2ant2 1134 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ∈
ℤ) |
| 86 | | simp3 1138 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) |
| 87 | 59, 86 | negne0d 11597 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ≠ 0) |
| 88 | | eqid 2736 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) |
| 89 | 88 | lgsval4 27285 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ -𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)))) |
| 90 | 83, 85, 87, 89 | syl3anc 1373 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)))) |
| 91 | 72 | lgsval4 27285 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
| 92 | 91 | oveq2d 7426 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
| 93 | 82, 90, 92 | 3eqtr4d 2781 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) |