Step | Hyp | Ref
| Expression |
1 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝐴 < 0 → if(𝐴 < 0, -1, 1) =
-1) |
2 | 1 | adantl 482 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1) |
3 | 2 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))) |
4 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (if(𝑁 < 0, -1, 1) = -1 → (-1
· if(𝑁 < 0, -1,
1)) = (-1 · -1)) |
5 | | neg1mulneg1e1 12186 |
. . . . . . . . . 10
⊢ (-1
· -1) = 1 |
6 | 4, 5 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (if(𝑁 < 0, -1, 1) = -1 → (-1
· if(𝑁 < 0, -1,
1)) = 1) |
7 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (if(𝑁 < 0, -1, 1) = 1 → (-1
· if(𝑁 < 0, -1,
1)) = (-1 · 1)) |
8 | | ax-1cn 10929 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
9 | 8 | mulm1i 11420 |
. . . . . . . . . 10
⊢ (-1
· 1) = -1 |
10 | 7, 9 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (if(𝑁 < 0, -1, 1) = 1 → (-1
· if(𝑁 < 0, -1,
1)) = -1) |
11 | 6, 10 | ifsb 4472 |
. . . . . . . 8
⊢ (-1
· if(𝑁 < 0, -1,
1)) = if(𝑁 < 0, 1,
-1) |
12 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝐴 < 0) |
13 | 12 | biantrud 532 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0))) |
14 | 13 | ifbid 4482 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
15 | 14 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if(𝑁 < 0, -1, 1)) = (-1 ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1,
1))) |
16 | | simpl3 1192 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ≠ 0) |
17 | 16 | necomd 2999 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 0 ≠ 𝑁) |
18 | | simpl2 1191 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℤ) |
19 | 18 | zred 12426 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℝ) |
20 | | 0re 10977 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
21 | | ltlen 11076 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 < 0
↔ (𝑁 ≤ 0 ∧ 0
≠ 𝑁))) |
22 | 19, 20, 21 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
23 | 17, 22 | mpbiran2d 705 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ 𝑁 ≤ 0)) |
24 | 19 | le0neg1d 11546 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
25 | 19 | renegcld 11402 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → -𝑁 ∈ ℝ) |
26 | | lenlt 11053 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝑁
∈ ℝ) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0)) |
27 | 20, 25, 26 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0)) |
28 | 23, 24, 27 | 3bitrd 305 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ ¬ -𝑁 < 0)) |
29 | 28 | ifbid 4482 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(¬ -𝑁 < 0, 1,
-1)) |
30 | | ifnot 4511 |
. . . . . . . . 9
⊢ if(¬
-𝑁 < 0, 1, -1) =
if(-𝑁 < 0, -1,
1) |
31 | 29, 30 | eqtrdi 2794 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1)) |
32 | 11, 15, 31 | 3eqtr3a 2802 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if(-𝑁 < 0, -1, 1)) |
33 | 12 | biantrud 532 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-𝑁 < 0 ↔ (-𝑁 < 0 ∧ 𝐴 < 0))) |
34 | 33 | ifbid 4482 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(-𝑁 < 0, -1, 1) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
35 | 3, 32, 34 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
36 | | 1t1e1 12135 |
. . . . . . 7
⊢ (1
· 1) = 1 |
37 | | iffalse 4468 |
. . . . . . . . 9
⊢ (¬
𝐴 < 0 → if(𝐴 < 0, -1, 1) =
1) |
38 | 37 | adantl 482 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) =
1) |
39 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0) |
40 | 39 | intnand 489 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) |
41 | 40 | iffalsed 4470 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
42 | 38, 41 | oveq12d 7293 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (1 ·
1)) |
43 | 39 | intnand 489 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (-𝑁 < 0 ∧ 𝐴 < 0)) |
44 | 43 | iffalsed 4470 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
45 | 36, 42, 44 | 3eqtr4a 2804 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
46 | 35, 45 | pm2.61dan 810 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
47 | 46 | eqcomd 2744 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))) |
48 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈
ℙ) |
49 | | simpl2 1191 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℤ) |
50 | | zq 12694 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℚ) |
51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℚ) |
52 | | pcneg 16575 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁)) |
53 | 48, 51, 52 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁)) |
54 | 53 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁))) |
55 | 54 | ifeq1da 4490 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
56 | 55 | mpteq2dv 5176 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) |
57 | 56 | seqeq3d 13729 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))) |
58 | | zcn 12324 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
59 | 58 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈
ℂ) |
60 | 59 | absnegd 15161 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
(abs‘-𝑁) =
(abs‘𝑁)) |
61 | 57, 60 | fveq12d 6781 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) |
62 | 47, 61 | oveq12d 7293 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = ((if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
63 | | neg1cn 12087 |
. . . . . 6
⊢ -1 ∈
ℂ |
64 | 63, 8 | ifcli 4506 |
. . . . 5
⊢ if(𝐴 < 0, -1, 1) ∈
ℂ |
65 | 64 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) ∈
ℂ) |
66 | 63, 8 | ifcli 4506 |
. . . . 5
⊢ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ |
67 | 66 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ) |
68 | | nnabscl 15037 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
69 | 68 | 3adant1 1129 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
70 | | nnuz 12621 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
71 | 69, 70 | eleqtrdi 2849 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
(ℤ≥‘1)) |
72 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
73 | 72 | lgsfcl3 26466 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) |
74 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑥 ∈ (1...(abs‘𝑁)) → 𝑥 ∈ ℕ) |
75 | | ffvelrn 6959 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ) |
76 | 73, 74, 75 | syl2an 596 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑥 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ) |
77 | | zmulcl 12369 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) |
78 | 77 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
79 | 71, 76, 78 | seqcl 13743 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ) |
80 | 79 | zcnd 12427 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ) |
81 | 65, 67, 80 | mulassd 10998 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) ·
(seq1( · , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
82 | 62, 81 | eqtrd 2778 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
83 | | simp1 1135 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈
ℤ) |
84 | | znegcl 12355 |
. . . 4
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
85 | 84 | 3ad2ant2 1133 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ∈
ℤ) |
86 | | simp3 1137 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) |
87 | 59, 86 | negne0d 11330 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ≠ 0) |
88 | | eqid 2738 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) |
89 | 88 | lgsval4 26465 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ -𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)))) |
90 | 83, 85, 87, 89 | syl3anc 1370 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)))) |
91 | 72 | lgsval4 26465 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
92 | 91 | oveq2d 7291 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
93 | 82, 90, 92 | 3eqtr4d 2788 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) |