MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchreq Structured version   Visualization version   GIF version

Theorem dchreq 26406
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrresb.g 𝐺 = (DChr‘𝑁)
dchrresb.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrresb.b 𝐷 = (Base‘𝐺)
dchrresb.u 𝑈 = (Unit‘𝑍)
dchrresb.x (𝜑𝑋𝐷)
dchrresb.Y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchreq (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
Distinct variable groups:   𝜑,𝑘   𝑈,𝑘   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   𝐺(𝑘)   𝑁(𝑘)

Proof of Theorem dchreq
StepHypRef Expression
1 eldif 3897 . . . . 5 (𝑘 ∈ ((Base‘𝑍) ∖ 𝑈) ↔ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈))
2 dchrresb.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
3 dchrresb.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrresb.b . . . . . . . . 9 𝐷 = (Base‘𝐺)
5 eqid 2738 . . . . . . . . 9 (Base‘𝑍) = (Base‘𝑍)
6 dchrresb.u . . . . . . . . 9 𝑈 = (Unit‘𝑍)
7 dchrresb.x . . . . . . . . . 10 (𝜑𝑋𝐷)
87adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑋𝐷)
9 simpr 485 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑘 ∈ (Base‘𝑍))
102, 3, 4, 5, 6, 8, 9dchrn0 26398 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
1110biimpd 228 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
1211necon1bd 2961 . . . . . 6 ((𝜑𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
1312impr 455 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈)) → (𝑋𝑘) = 0)
141, 13sylan2b 594 . . . 4 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋𝑘) = 0)
15 dchrresb.Y . . . . . . . . . 10 (𝜑𝑌𝐷)
1615adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑌𝐷)
172, 3, 4, 5, 6, 16, 9dchrn0 26398 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑌𝑘) ≠ 0 ↔ 𝑘𝑈))
1817biimpd 228 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑌𝑘) ≠ 0 → 𝑘𝑈))
1918necon1bd 2961 . . . . . 6 ((𝜑𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘𝑈 → (𝑌𝑘) = 0))
2019impr 455 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈)) → (𝑌𝑘) = 0)
211, 20sylan2b 594 . . . 4 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑌𝑘) = 0)
2214, 21eqtr4d 2781 . . 3 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋𝑘) = (𝑌𝑘))
2322ralrimiva 3103 . 2 (𝜑 → ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘))
242, 3, 4, 5, 7dchrf 26390 . . . . 5 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
2524ffnd 6601 . . . 4 (𝜑𝑋 Fn (Base‘𝑍))
262, 3, 4, 5, 15dchrf 26390 . . . . 5 (𝜑𝑌:(Base‘𝑍)⟶ℂ)
2726ffnd 6601 . . . 4 (𝜑𝑌 Fn (Base‘𝑍))
28 eqfnfv 6909 . . . 4 ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘)))
2925, 27, 28syl2anc 584 . . 3 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘)))
305, 6unitss 19902 . . . . . 6 𝑈 ⊆ (Base‘𝑍)
31 undif 4415 . . . . . 6 (𝑈 ⊆ (Base‘𝑍) ↔ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍))
3230, 31mpbi 229 . . . . 5 (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍)
3332raleqi 3346 . . . 4 (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋𝑘) = (𝑌𝑘) ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘))
34 ralunb 4125 . . . 4 (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋𝑘) = (𝑌𝑘) ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘)))
3533, 34bitr3i 276 . . 3 (∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘) ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘)))
3629, 35bitrdi 287 . 2 (𝜑 → (𝑋 = 𝑌 ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘))))
3723, 36mpbiran2d 705 1 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  cun 3885  wss 3887   Fn wfn 6428  cfv 6433  cc 10869  0cc0 10871  Basecbs 16912  Unitcui 19881  ℤ/nczn 20704  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-nsg 18753  df-eqg 18754  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-cnfld 20598  df-zring 20671  df-zn 20708  df-dchr 26381
This theorem is referenced by:  dchrresb  26407  dchrinv  26409  dchrsum2  26416
  Copyright terms: Public domain W3C validator