| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchreq | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrresb.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrresb.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrresb.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrresb.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrresb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrresb.Y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| dchreq | ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3941 | . . . . 5 ⊢ (𝑘 ∈ ((Base‘𝑍) ∖ 𝑈) ↔ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) | |
| 2 | dchrresb.g | . . . . . . . . 9 ⊢ 𝐺 = (DChr‘𝑁) | |
| 3 | dchrresb.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 4 | dchrresb.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
| 5 | eqid 2734 | . . . . . . . . 9 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 6 | dchrresb.u | . . . . . . . . 9 ⊢ 𝑈 = (Unit‘𝑍) | |
| 7 | dchrresb.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑋 ∈ 𝐷) |
| 9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑘 ∈ (Base‘𝑍)) | |
| 10 | 2, 3, 4, 5, 6, 8, 9 | dchrn0 27230 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
| 11 | 10 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
| 12 | 11 | necon1bd 2949 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑋‘𝑘) = 0)) |
| 13 | 12 | impr 454 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑋‘𝑘) = 0) |
| 14 | 1, 13 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = 0) |
| 15 | dchrresb.Y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
| 16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑌 ∈ 𝐷) |
| 17 | 2, 3, 4, 5, 6, 16, 9 | dchrn0 27230 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
| 18 | 17 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
| 19 | 18 | necon1bd 2949 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑌‘𝑘) = 0)) |
| 20 | 19 | impr 454 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑌‘𝑘) = 0) |
| 21 | 1, 20 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑌‘𝑘) = 0) |
| 22 | 14, 21 | eqtr4d 2772 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = (𝑌‘𝑘)) |
| 23 | 22 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)) |
| 24 | 2, 3, 4, 5, 7 | dchrf 27222 | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
| 25 | 24 | ffnd 6717 | . . . 4 ⊢ (𝜑 → 𝑋 Fn (Base‘𝑍)) |
| 26 | 2, 3, 4, 5, 15 | dchrf 27222 | . . . . 5 ⊢ (𝜑 → 𝑌:(Base‘𝑍)⟶ℂ) |
| 27 | 26 | ffnd 6717 | . . . 4 ⊢ (𝜑 → 𝑌 Fn (Base‘𝑍)) |
| 28 | eqfnfv 7031 | . . . 4 ⊢ ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
| 29 | 25, 27, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) |
| 30 | 5, 6 | unitss 20344 | . . . . . 6 ⊢ 𝑈 ⊆ (Base‘𝑍) |
| 31 | undif 4462 | . . . . . 6 ⊢ (𝑈 ⊆ (Base‘𝑍) ↔ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍)) | |
| 32 | 30, 31 | mpbi 230 | . . . . 5 ⊢ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍) |
| 33 | 32 | raleqi 3307 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘)) |
| 34 | ralunb 4177 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
| 35 | 33, 34 | bitr3i 277 | . . 3 ⊢ (∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) |
| 36 | 29, 35 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)))) |
| 37 | 23, 36 | mpbiran2d 708 | 1 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 Fn wfn 6536 ‘cfv 6541 ℂcc 11135 0cc0 11137 Basecbs 17229 Unitcui 20323 ℤ/nℤczn 21475 DChrcdchr 27212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-ec 8729 df-qs 8733 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-0g 17457 df-imas 17524 df-qus 17525 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-nsg 19111 df-eqg 19112 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-subrng 20514 df-subrg 20538 df-lmod 20828 df-lss 20898 df-lsp 20938 df-sra 21140 df-rgmod 21141 df-lidl 21180 df-rsp 21181 df-2idl 21222 df-cnfld 21327 df-zring 21420 df-zn 21479 df-dchr 27213 |
| This theorem is referenced by: dchrresb 27239 dchrinv 27241 dchrsum2 27248 |
| Copyright terms: Public domain | W3C validator |