![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchreq | Structured version Visualization version GIF version |
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrresb.g | β’ πΊ = (DChrβπ) |
dchrresb.z | β’ π = (β€/nβ€βπ) |
dchrresb.b | β’ π· = (BaseβπΊ) |
dchrresb.u | β’ π = (Unitβπ) |
dchrresb.x | β’ (π β π β π·) |
dchrresb.Y | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchreq | β’ (π β (π = π β βπ β π (πβπ) = (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3957 | . . . . 5 β’ (π β ((Baseβπ) β π) β (π β (Baseβπ) β§ Β¬ π β π)) | |
2 | dchrresb.g | . . . . . . . . 9 β’ πΊ = (DChrβπ) | |
3 | dchrresb.z | . . . . . . . . 9 β’ π = (β€/nβ€βπ) | |
4 | dchrresb.b | . . . . . . . . 9 β’ π· = (BaseβπΊ) | |
5 | eqid 2727 | . . . . . . . . 9 β’ (Baseβπ) = (Baseβπ) | |
6 | dchrresb.u | . . . . . . . . 9 β’ π = (Unitβπ) | |
7 | dchrresb.x | . . . . . . . . . 10 β’ (π β π β π·) | |
8 | 7 | adantr 479 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β π·) |
9 | simpr 483 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β (Baseβπ)) | |
10 | 2, 3, 4, 5, 6, 8, 9 | dchrn0 27201 | . . . . . . . 8 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
11 | 10 | biimpd 228 | . . . . . . 7 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
12 | 11 | necon1bd 2954 | . . . . . 6 β’ ((π β§ π β (Baseβπ)) β (Β¬ π β π β (πβπ) = 0)) |
13 | 12 | impr 453 | . . . . 5 β’ ((π β§ (π β (Baseβπ) β§ Β¬ π β π)) β (πβπ) = 0) |
14 | 1, 13 | sylan2b 592 | . . . 4 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = 0) |
15 | dchrresb.Y | . . . . . . . . . 10 β’ (π β π β π·) | |
16 | 15 | adantr 479 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β π·) |
17 | 2, 3, 4, 5, 6, 16, 9 | dchrn0 27201 | . . . . . . . 8 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
18 | 17 | biimpd 228 | . . . . . . 7 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
19 | 18 | necon1bd 2954 | . . . . . 6 β’ ((π β§ π β (Baseβπ)) β (Β¬ π β π β (πβπ) = 0)) |
20 | 19 | impr 453 | . . . . 5 β’ ((π β§ (π β (Baseβπ) β§ Β¬ π β π)) β (πβπ) = 0) |
21 | 1, 20 | sylan2b 592 | . . . 4 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = 0) |
22 | 14, 21 | eqtr4d 2770 | . . 3 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = (πβπ)) |
23 | 22 | ralrimiva 3142 | . 2 β’ (π β βπ β ((Baseβπ) β π)(πβπ) = (πβπ)) |
24 | 2, 3, 4, 5, 7 | dchrf 27193 | . . . . 5 β’ (π β π:(Baseβπ)βΆβ) |
25 | 24 | ffnd 6726 | . . . 4 β’ (π β π Fn (Baseβπ)) |
26 | 2, 3, 4, 5, 15 | dchrf 27193 | . . . . 5 β’ (π β π:(Baseβπ)βΆβ) |
27 | 26 | ffnd 6726 | . . . 4 β’ (π β π Fn (Baseβπ)) |
28 | eqfnfv 7043 | . . . 4 β’ ((π Fn (Baseβπ) β§ π Fn (Baseβπ)) β (π = π β βπ β (Baseβπ)(πβπ) = (πβπ))) | |
29 | 25, 27, 28 | syl2anc 582 | . . 3 β’ (π β (π = π β βπ β (Baseβπ)(πβπ) = (πβπ))) |
30 | 5, 6 | unitss 20320 | . . . . . 6 β’ π β (Baseβπ) |
31 | undif 4483 | . . . . . 6 β’ (π β (Baseβπ) β (π βͺ ((Baseβπ) β π)) = (Baseβπ)) | |
32 | 30, 31 | mpbi 229 | . . . . 5 β’ (π βͺ ((Baseβπ) β π)) = (Baseβπ) |
33 | 32 | raleqi 3319 | . . . 4 β’ (βπ β (π βͺ ((Baseβπ) β π))(πβπ) = (πβπ) β βπ β (Baseβπ)(πβπ) = (πβπ)) |
34 | ralunb 4191 | . . . 4 β’ (βπ β (π βͺ ((Baseβπ) β π))(πβπ) = (πβπ) β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ))) | |
35 | 33, 34 | bitr3i 276 | . . 3 β’ (βπ β (Baseβπ)(πβπ) = (πβπ) β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ))) |
36 | 29, 35 | bitrdi 286 | . 2 β’ (π β (π = π β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ)))) |
37 | 23, 36 | mpbiran2d 706 | 1 β’ (π β (π = π β βπ β π (πβπ) = (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2936 βwral 3057 β cdif 3944 βͺ cun 3945 β wss 3947 Fn wfn 6546 βcfv 6551 βcc 11142 0cc0 11144 Basecbs 17185 Unitcui 20299 β€/nβ€czn 21433 DChrcdchr 27183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-addf 11223 ax-mulf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-tpos 8236 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-ec 8731 df-qs 8735 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-fz 13523 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-0g 17428 df-imas 17495 df-qus 17496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18745 df-grp 18898 df-minusg 18899 df-sbg 18900 df-subg 19083 df-nsg 19084 df-eqg 19085 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-cring 20181 df-oppr 20278 df-dvdsr 20301 df-unit 20302 df-invr 20332 df-subrng 20488 df-subrg 20513 df-lmod 20750 df-lss 20821 df-lsp 20861 df-sra 21063 df-rgmod 21064 df-lidl 21109 df-rsp 21110 df-2idl 21149 df-cnfld 21285 df-zring 21378 df-zn 21437 df-dchr 27184 |
This theorem is referenced by: dchrresb 27210 dchrinv 27212 dchrsum2 27219 |
Copyright terms: Public domain | W3C validator |