![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchreq | Structured version Visualization version GIF version |
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrresb.g | β’ πΊ = (DChrβπ) |
dchrresb.z | β’ π = (β€/nβ€βπ) |
dchrresb.b | β’ π· = (BaseβπΊ) |
dchrresb.u | β’ π = (Unitβπ) |
dchrresb.x | β’ (π β π β π·) |
dchrresb.Y | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchreq | β’ (π β (π = π β βπ β π (πβπ) = (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3958 | . . . . 5 β’ (π β ((Baseβπ) β π) β (π β (Baseβπ) β§ Β¬ π β π)) | |
2 | dchrresb.g | . . . . . . . . 9 β’ πΊ = (DChrβπ) | |
3 | dchrresb.z | . . . . . . . . 9 β’ π = (β€/nβ€βπ) | |
4 | dchrresb.b | . . . . . . . . 9 β’ π· = (BaseβπΊ) | |
5 | eqid 2732 | . . . . . . . . 9 β’ (Baseβπ) = (Baseβπ) | |
6 | dchrresb.u | . . . . . . . . 9 β’ π = (Unitβπ) | |
7 | dchrresb.x | . . . . . . . . . 10 β’ (π β π β π·) | |
8 | 7 | adantr 481 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β π·) |
9 | simpr 485 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β (Baseβπ)) | |
10 | 2, 3, 4, 5, 6, 8, 9 | dchrn0 26750 | . . . . . . . 8 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
11 | 10 | biimpd 228 | . . . . . . 7 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
12 | 11 | necon1bd 2958 | . . . . . 6 β’ ((π β§ π β (Baseβπ)) β (Β¬ π β π β (πβπ) = 0)) |
13 | 12 | impr 455 | . . . . 5 β’ ((π β§ (π β (Baseβπ) β§ Β¬ π β π)) β (πβπ) = 0) |
14 | 1, 13 | sylan2b 594 | . . . 4 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = 0) |
15 | dchrresb.Y | . . . . . . . . . 10 β’ (π β π β π·) | |
16 | 15 | adantr 481 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β π·) |
17 | 2, 3, 4, 5, 6, 16, 9 | dchrn0 26750 | . . . . . . . 8 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
18 | 17 | biimpd 228 | . . . . . . 7 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
19 | 18 | necon1bd 2958 | . . . . . 6 β’ ((π β§ π β (Baseβπ)) β (Β¬ π β π β (πβπ) = 0)) |
20 | 19 | impr 455 | . . . . 5 β’ ((π β§ (π β (Baseβπ) β§ Β¬ π β π)) β (πβπ) = 0) |
21 | 1, 20 | sylan2b 594 | . . . 4 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = 0) |
22 | 14, 21 | eqtr4d 2775 | . . 3 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = (πβπ)) |
23 | 22 | ralrimiva 3146 | . 2 β’ (π β βπ β ((Baseβπ) β π)(πβπ) = (πβπ)) |
24 | 2, 3, 4, 5, 7 | dchrf 26742 | . . . . 5 β’ (π β π:(Baseβπ)βΆβ) |
25 | 24 | ffnd 6718 | . . . 4 β’ (π β π Fn (Baseβπ)) |
26 | 2, 3, 4, 5, 15 | dchrf 26742 | . . . . 5 β’ (π β π:(Baseβπ)βΆβ) |
27 | 26 | ffnd 6718 | . . . 4 β’ (π β π Fn (Baseβπ)) |
28 | eqfnfv 7032 | . . . 4 β’ ((π Fn (Baseβπ) β§ π Fn (Baseβπ)) β (π = π β βπ β (Baseβπ)(πβπ) = (πβπ))) | |
29 | 25, 27, 28 | syl2anc 584 | . . 3 β’ (π β (π = π β βπ β (Baseβπ)(πβπ) = (πβπ))) |
30 | 5, 6 | unitss 20189 | . . . . . 6 β’ π β (Baseβπ) |
31 | undif 4481 | . . . . . 6 β’ (π β (Baseβπ) β (π βͺ ((Baseβπ) β π)) = (Baseβπ)) | |
32 | 30, 31 | mpbi 229 | . . . . 5 β’ (π βͺ ((Baseβπ) β π)) = (Baseβπ) |
33 | 32 | raleqi 3323 | . . . 4 β’ (βπ β (π βͺ ((Baseβπ) β π))(πβπ) = (πβπ) β βπ β (Baseβπ)(πβπ) = (πβπ)) |
34 | ralunb 4191 | . . . 4 β’ (βπ β (π βͺ ((Baseβπ) β π))(πβπ) = (πβπ) β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ))) | |
35 | 33, 34 | bitr3i 276 | . . 3 β’ (βπ β (Baseβπ)(πβπ) = (πβπ) β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ))) |
36 | 29, 35 | bitrdi 286 | . 2 β’ (π β (π = π β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ)))) |
37 | 23, 36 | mpbiran2d 706 | 1 β’ (π β (π = π β βπ β π (πβπ) = (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β cdif 3945 βͺ cun 3946 β wss 3948 Fn wfn 6538 βcfv 6543 βcc 11107 0cc0 11109 Basecbs 17143 Unitcui 20168 β€/nβ€czn 21051 DChrcdchr 26732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-ec 8704 df-qs 8708 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-imas 17453 df-qus 17454 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-nsg 19003 df-eqg 19004 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-subrg 20316 df-lmod 20472 df-lss 20542 df-lsp 20582 df-sra 20784 df-rgmod 20785 df-lidl 20786 df-rsp 20787 df-2idl 20856 df-cnfld 20944 df-zring 21017 df-zn 21055 df-dchr 26733 |
This theorem is referenced by: dchrresb 26759 dchrinv 26761 dchrsum2 26768 |
Copyright terms: Public domain | W3C validator |