| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchreq | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrresb.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrresb.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrresb.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrresb.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrresb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrresb.Y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| dchreq | ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3913 | . . . . 5 ⊢ (𝑘 ∈ ((Base‘𝑍) ∖ 𝑈) ↔ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) | |
| 2 | dchrresb.g | . . . . . . . . 9 ⊢ 𝐺 = (DChr‘𝑁) | |
| 3 | dchrresb.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 4 | dchrresb.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
| 5 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 6 | dchrresb.u | . . . . . . . . 9 ⊢ 𝑈 = (Unit‘𝑍) | |
| 7 | dchrresb.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑋 ∈ 𝐷) |
| 9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑘 ∈ (Base‘𝑍)) | |
| 10 | 2, 3, 4, 5, 6, 8, 9 | dchrn0 27159 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
| 11 | 10 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
| 12 | 11 | necon1bd 2943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑋‘𝑘) = 0)) |
| 13 | 12 | impr 454 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑋‘𝑘) = 0) |
| 14 | 1, 13 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = 0) |
| 15 | dchrresb.Y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
| 16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑌 ∈ 𝐷) |
| 17 | 2, 3, 4, 5, 6, 16, 9 | dchrn0 27159 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
| 18 | 17 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
| 19 | 18 | necon1bd 2943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑌‘𝑘) = 0)) |
| 20 | 19 | impr 454 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑌‘𝑘) = 0) |
| 21 | 1, 20 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑌‘𝑘) = 0) |
| 22 | 14, 21 | eqtr4d 2767 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = (𝑌‘𝑘)) |
| 23 | 22 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)) |
| 24 | 2, 3, 4, 5, 7 | dchrf 27151 | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
| 25 | 24 | ffnd 6653 | . . . 4 ⊢ (𝜑 → 𝑋 Fn (Base‘𝑍)) |
| 26 | 2, 3, 4, 5, 15 | dchrf 27151 | . . . . 5 ⊢ (𝜑 → 𝑌:(Base‘𝑍)⟶ℂ) |
| 27 | 26 | ffnd 6653 | . . . 4 ⊢ (𝜑 → 𝑌 Fn (Base‘𝑍)) |
| 28 | eqfnfv 6965 | . . . 4 ⊢ ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
| 29 | 25, 27, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) |
| 30 | 5, 6 | unitss 20261 | . . . . . 6 ⊢ 𝑈 ⊆ (Base‘𝑍) |
| 31 | undif 4433 | . . . . . 6 ⊢ (𝑈 ⊆ (Base‘𝑍) ↔ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍)) | |
| 32 | 30, 31 | mpbi 230 | . . . . 5 ⊢ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍) |
| 33 | 32 | raleqi 3287 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘)) |
| 34 | ralunb 4148 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
| 35 | 33, 34 | bitr3i 277 | . . 3 ⊢ (∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) |
| 36 | 29, 35 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)))) |
| 37 | 23, 36 | mpbiran2d 708 | 1 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3900 ∪ cun 3901 ⊆ wss 3903 Fn wfn 6477 ‘cfv 6482 ℂcc 11007 0cc0 11009 Basecbs 17120 Unitcui 20240 ℤ/nℤczn 21409 DChrcdchr 27141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-nsg 19003 df-eqg 19004 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-2idl 21157 df-cnfld 21262 df-zring 21354 df-zn 21413 df-dchr 27142 |
| This theorem is referenced by: dchrresb 27168 dchrinv 27170 dchrsum2 27177 |
| Copyright terms: Public domain | W3C validator |