MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchreq Structured version   Visualization version   GIF version

Theorem dchreq 27322
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrresb.g 𝐺 = (DChr‘𝑁)
dchrresb.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrresb.b 𝐷 = (Base‘𝐺)
dchrresb.u 𝑈 = (Unit‘𝑍)
dchrresb.x (𝜑𝑋𝐷)
dchrresb.Y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchreq (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
Distinct variable groups:   𝜑,𝑘   𝑈,𝑘   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   𝐺(𝑘)   𝑁(𝑘)

Proof of Theorem dchreq
StepHypRef Expression
1 eldif 3986 . . . . 5 (𝑘 ∈ ((Base‘𝑍) ∖ 𝑈) ↔ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈))
2 dchrresb.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
3 dchrresb.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrresb.b . . . . . . . . 9 𝐷 = (Base‘𝐺)
5 eqid 2740 . . . . . . . . 9 (Base‘𝑍) = (Base‘𝑍)
6 dchrresb.u . . . . . . . . 9 𝑈 = (Unit‘𝑍)
7 dchrresb.x . . . . . . . . . 10 (𝜑𝑋𝐷)
87adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑋𝐷)
9 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑘 ∈ (Base‘𝑍))
102, 3, 4, 5, 6, 8, 9dchrn0 27314 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
1110biimpd 229 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
1211necon1bd 2964 . . . . . 6 ((𝜑𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
1312impr 454 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈)) → (𝑋𝑘) = 0)
141, 13sylan2b 593 . . . 4 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋𝑘) = 0)
15 dchrresb.Y . . . . . . . . . 10 (𝜑𝑌𝐷)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑌𝐷)
172, 3, 4, 5, 6, 16, 9dchrn0 27314 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑌𝑘) ≠ 0 ↔ 𝑘𝑈))
1817biimpd 229 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑌𝑘) ≠ 0 → 𝑘𝑈))
1918necon1bd 2964 . . . . . 6 ((𝜑𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘𝑈 → (𝑌𝑘) = 0))
2019impr 454 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈)) → (𝑌𝑘) = 0)
211, 20sylan2b 593 . . . 4 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑌𝑘) = 0)
2214, 21eqtr4d 2783 . . 3 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋𝑘) = (𝑌𝑘))
2322ralrimiva 3152 . 2 (𝜑 → ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘))
242, 3, 4, 5, 7dchrf 27306 . . . . 5 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
2524ffnd 6750 . . . 4 (𝜑𝑋 Fn (Base‘𝑍))
262, 3, 4, 5, 15dchrf 27306 . . . . 5 (𝜑𝑌:(Base‘𝑍)⟶ℂ)
2726ffnd 6750 . . . 4 (𝜑𝑌 Fn (Base‘𝑍))
28 eqfnfv 7066 . . . 4 ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘)))
2925, 27, 28syl2anc 583 . . 3 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘)))
305, 6unitss 20404 . . . . . 6 𝑈 ⊆ (Base‘𝑍)
31 undif 4505 . . . . . 6 (𝑈 ⊆ (Base‘𝑍) ↔ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍))
3230, 31mpbi 230 . . . . 5 (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍)
3332raleqi 3332 . . . 4 (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋𝑘) = (𝑌𝑘) ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘))
34 ralunb 4220 . . . 4 (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋𝑘) = (𝑌𝑘) ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘)))
3533, 34bitr3i 277 . . 3 (∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘) ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘)))
3629, 35bitrdi 287 . 2 (𝜑 → (𝑋 = 𝑌 ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘))))
3723, 36mpbiran2d 707 1 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  cun 3974  wss 3976   Fn wfn 6570  cfv 6575  cc 11184  0cc0 11186  Basecbs 17260  Unitcui 20383  ℤ/nczn 21538  DChrcdchr 27296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-addf 11265  ax-mulf 11266
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-ec 8767  df-qs 8771  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-sup 9513  df-inf 9514  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-fz 13570  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-starv 17328  df-sca 17329  df-vsca 17330  df-ip 17331  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-0g 17503  df-imas 17570  df-qus 17571  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-mhm 18820  df-grp 18978  df-minusg 18979  df-sbg 18980  df-subg 19165  df-nsg 19166  df-eqg 19167  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-cring 20265  df-oppr 20362  df-dvdsr 20385  df-unit 20386  df-invr 20416  df-subrng 20574  df-subrg 20599  df-lmod 20884  df-lss 20955  df-lsp 20995  df-sra 21197  df-rgmod 21198  df-lidl 21243  df-rsp 21244  df-2idl 21285  df-cnfld 21390  df-zring 21483  df-zn 21542  df-dchr 27297
This theorem is referenced by:  dchrresb  27323  dchrinv  27325  dchrsum2  27332
  Copyright terms: Public domain W3C validator