![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchreq | Structured version Visualization version GIF version |
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrresb.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrresb.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrresb.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrresb.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrresb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrresb.Y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
dchreq | ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3976 | . . . . 5 ⊢ (𝑘 ∈ ((Base‘𝑍) ∖ 𝑈) ↔ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) | |
2 | dchrresb.g | . . . . . . . . 9 ⊢ 𝐺 = (DChr‘𝑁) | |
3 | dchrresb.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
4 | dchrresb.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
5 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
6 | dchrresb.u | . . . . . . . . 9 ⊢ 𝑈 = (Unit‘𝑍) | |
7 | dchrresb.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑋 ∈ 𝐷) |
9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑘 ∈ (Base‘𝑍)) | |
10 | 2, 3, 4, 5, 6, 8, 9 | dchrn0 27320 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
11 | 10 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
12 | 11 | necon1bd 2958 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑋‘𝑘) = 0)) |
13 | 12 | impr 454 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑋‘𝑘) = 0) |
14 | 1, 13 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = 0) |
15 | dchrresb.Y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → 𝑌 ∈ 𝐷) |
17 | 2, 3, 4, 5, 6, 16, 9 | dchrn0 27320 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 ↔ 𝑘 ∈ 𝑈)) |
18 | 17 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → ((𝑌‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
19 | 18 | necon1bd 2958 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘 ∈ 𝑈 → (𝑌‘𝑘) = 0)) |
20 | 19 | impr 454 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘 ∈ 𝑈)) → (𝑌‘𝑘) = 0) |
21 | 1, 20 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑌‘𝑘) = 0) |
22 | 14, 21 | eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋‘𝑘) = (𝑌‘𝑘)) |
23 | 22 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)) |
24 | 2, 3, 4, 5, 7 | dchrf 27312 | . . . . 5 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
25 | 24 | ffnd 6745 | . . . 4 ⊢ (𝜑 → 𝑋 Fn (Base‘𝑍)) |
26 | 2, 3, 4, 5, 15 | dchrf 27312 | . . . . 5 ⊢ (𝜑 → 𝑌:(Base‘𝑍)⟶ℂ) |
27 | 26 | ffnd 6745 | . . . 4 ⊢ (𝜑 → 𝑌 Fn (Base‘𝑍)) |
28 | eqfnfv 7058 | . . . 4 ⊢ ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
29 | 25, 27, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘))) |
30 | 5, 6 | unitss 20402 | . . . . . 6 ⊢ 𝑈 ⊆ (Base‘𝑍) |
31 | undif 4491 | . . . . . 6 ⊢ (𝑈 ⊆ (Base‘𝑍) ↔ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍)) | |
32 | 30, 31 | mpbi 230 | . . . . 5 ⊢ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍) |
33 | 32 | raleqi 3324 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘)) |
34 | ralunb 4210 | . . . 4 ⊢ (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) | |
35 | 33, 34 | bitr3i 277 | . . 3 ⊢ (∀𝑘 ∈ (Base‘𝑍)(𝑋‘𝑘) = (𝑌‘𝑘) ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘))) |
36 | 29, 35 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ (∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋‘𝑘) = (𝑌‘𝑘)))) |
37 | 23, 36 | mpbiran2d 708 | 1 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ 𝑈 (𝑋‘𝑘) = (𝑌‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∖ cdif 3963 ∪ cun 3964 ⊆ wss 3966 Fn wfn 6564 ‘cfv 6569 ℂcc 11160 0cc0 11162 Basecbs 17254 Unitcui 20381 ℤ/nℤczn 21540 DChrcdchr 27302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-addf 11241 ax-mulf 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-ec 8755 df-qs 8759 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-0g 17497 df-imas 17564 df-qus 17565 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-nsg 19164 df-eqg 19165 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-subrng 20572 df-subrg 20596 df-lmod 20886 df-lss 20957 df-lsp 20997 df-sra 21199 df-rgmod 21200 df-lidl 21245 df-rsp 21246 df-2idl 21287 df-cnfld 21392 df-zring 21485 df-zn 21544 df-dchr 27303 |
This theorem is referenced by: dchrresb 27329 dchrinv 27331 dchrsum2 27338 |
Copyright terms: Public domain | W3C validator |