![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchreq | Structured version Visualization version GIF version |
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrresb.g | β’ πΊ = (DChrβπ) |
dchrresb.z | β’ π = (β€/nβ€βπ) |
dchrresb.b | β’ π· = (BaseβπΊ) |
dchrresb.u | β’ π = (Unitβπ) |
dchrresb.x | β’ (π β π β π·) |
dchrresb.Y | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchreq | β’ (π β (π = π β βπ β π (πβπ) = (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3953 | . . . . 5 β’ (π β ((Baseβπ) β π) β (π β (Baseβπ) β§ Β¬ π β π)) | |
2 | dchrresb.g | . . . . . . . . 9 β’ πΊ = (DChrβπ) | |
3 | dchrresb.z | . . . . . . . . 9 β’ π = (β€/nβ€βπ) | |
4 | dchrresb.b | . . . . . . . . 9 β’ π· = (BaseβπΊ) | |
5 | eqid 2726 | . . . . . . . . 9 β’ (Baseβπ) = (Baseβπ) | |
6 | dchrresb.u | . . . . . . . . 9 β’ π = (Unitβπ) | |
7 | dchrresb.x | . . . . . . . . . 10 β’ (π β π β π·) | |
8 | 7 | adantr 480 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β π·) |
9 | simpr 484 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β (Baseβπ)) | |
10 | 2, 3, 4, 5, 6, 8, 9 | dchrn0 27134 | . . . . . . . 8 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
11 | 10 | biimpd 228 | . . . . . . 7 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
12 | 11 | necon1bd 2952 | . . . . . 6 β’ ((π β§ π β (Baseβπ)) β (Β¬ π β π β (πβπ) = 0)) |
13 | 12 | impr 454 | . . . . 5 β’ ((π β§ (π β (Baseβπ) β§ Β¬ π β π)) β (πβπ) = 0) |
14 | 1, 13 | sylan2b 593 | . . . 4 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = 0) |
15 | dchrresb.Y | . . . . . . . . . 10 β’ (π β π β π·) | |
16 | 15 | adantr 480 | . . . . . . . . 9 β’ ((π β§ π β (Baseβπ)) β π β π·) |
17 | 2, 3, 4, 5, 6, 16, 9 | dchrn0 27134 | . . . . . . . 8 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
18 | 17 | biimpd 228 | . . . . . . 7 β’ ((π β§ π β (Baseβπ)) β ((πβπ) β 0 β π β π)) |
19 | 18 | necon1bd 2952 | . . . . . 6 β’ ((π β§ π β (Baseβπ)) β (Β¬ π β π β (πβπ) = 0)) |
20 | 19 | impr 454 | . . . . 5 β’ ((π β§ (π β (Baseβπ) β§ Β¬ π β π)) β (πβπ) = 0) |
21 | 1, 20 | sylan2b 593 | . . . 4 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = 0) |
22 | 14, 21 | eqtr4d 2769 | . . 3 β’ ((π β§ π β ((Baseβπ) β π)) β (πβπ) = (πβπ)) |
23 | 22 | ralrimiva 3140 | . 2 β’ (π β βπ β ((Baseβπ) β π)(πβπ) = (πβπ)) |
24 | 2, 3, 4, 5, 7 | dchrf 27126 | . . . . 5 β’ (π β π:(Baseβπ)βΆβ) |
25 | 24 | ffnd 6711 | . . . 4 β’ (π β π Fn (Baseβπ)) |
26 | 2, 3, 4, 5, 15 | dchrf 27126 | . . . . 5 β’ (π β π:(Baseβπ)βΆβ) |
27 | 26 | ffnd 6711 | . . . 4 β’ (π β π Fn (Baseβπ)) |
28 | eqfnfv 7025 | . . . 4 β’ ((π Fn (Baseβπ) β§ π Fn (Baseβπ)) β (π = π β βπ β (Baseβπ)(πβπ) = (πβπ))) | |
29 | 25, 27, 28 | syl2anc 583 | . . 3 β’ (π β (π = π β βπ β (Baseβπ)(πβπ) = (πβπ))) |
30 | 5, 6 | unitss 20276 | . . . . . 6 β’ π β (Baseβπ) |
31 | undif 4476 | . . . . . 6 β’ (π β (Baseβπ) β (π βͺ ((Baseβπ) β π)) = (Baseβπ)) | |
32 | 30, 31 | mpbi 229 | . . . . 5 β’ (π βͺ ((Baseβπ) β π)) = (Baseβπ) |
33 | 32 | raleqi 3317 | . . . 4 β’ (βπ β (π βͺ ((Baseβπ) β π))(πβπ) = (πβπ) β βπ β (Baseβπ)(πβπ) = (πβπ)) |
34 | ralunb 4186 | . . . 4 β’ (βπ β (π βͺ ((Baseβπ) β π))(πβπ) = (πβπ) β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ))) | |
35 | 33, 34 | bitr3i 277 | . . 3 β’ (βπ β (Baseβπ)(πβπ) = (πβπ) β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ))) |
36 | 29, 35 | bitrdi 287 | . 2 β’ (π β (π = π β (βπ β π (πβπ) = (πβπ) β§ βπ β ((Baseβπ) β π)(πβπ) = (πβπ)))) |
37 | 23, 36 | mpbiran2d 705 | 1 β’ (π β (π = π β βπ β π (πβπ) = (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 βwral 3055 β cdif 3940 βͺ cun 3941 β wss 3943 Fn wfn 6531 βcfv 6536 βcc 11107 0cc0 11109 Basecbs 17151 Unitcui 20255 β€/nβ€czn 21385 DChrcdchr 27116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-ec 8704 df-qs 8708 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-imas 17461 df-qus 17462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19048 df-nsg 19049 df-eqg 19050 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20234 df-dvdsr 20257 df-unit 20258 df-invr 20288 df-subrng 20444 df-subrg 20469 df-lmod 20706 df-lss 20777 df-lsp 20817 df-sra 21019 df-rgmod 21020 df-lidl 21065 df-rsp 21066 df-2idl 21105 df-cnfld 21237 df-zring 21330 df-zn 21389 df-dchr 27117 |
This theorem is referenced by: dchrresb 27143 dchrinv 27145 dchrsum2 27152 |
Copyright terms: Public domain | W3C validator |