Step | Hyp | Ref
| Expression |
1 | | ssid 3848 |
. 2
⊢ 𝐵 ⊆ 𝐵 |
2 | | itgfsum.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
3 | | sseq1 3851 |
. . . . . 6
⊢ (𝑡 = ∅ → (𝑡 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
4 | | sumeq1 14803 |
. . . . . . . . . . . 12
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
5 | | sum0 14836 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
6 | 4, 5 | syl6eq 2877 |
. . . . . . . . . . 11
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 𝐶 = 0) |
7 | 6 | mpteq2dv 4970 |
. . . . . . . . . 10
⊢ (𝑡 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ 0)) |
8 | | fconstmpt 5402 |
. . . . . . . . . 10
⊢ (𝐴 × {0}) = (𝑥 ∈ 𝐴 ↦ 0) |
9 | 7, 8 | syl6eqr 2879 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝐴 × {0})) |
10 | 9 | eleq1d 2891 |
. . . . . . . 8
⊢ (𝑡 = ∅ → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝐴 × {0}) ∈
𝐿1)) |
11 | 10 | anbi1d 623 |
. . . . . . 7
⊢ (𝑡 = ∅ → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝐴 × {0}) ∈ 𝐿1
∧ ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) |
12 | | itgz 23953 |
. . . . . . . . 9
⊢
∫𝐴0 d𝑥 = 0 |
13 | 6 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝑡 = ∅ ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = 0) |
14 | 13 | itgeq2dv 23954 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴0 d𝑥) |
15 | | sumeq1 14803 |
. . . . . . . . . 10
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ ∅ ∫𝐴𝐶 d𝑥) |
16 | | sum0 14836 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
∅ ∫𝐴𝐶 d𝑥 = 0 |
17 | 15, 16 | syl6eq 2877 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = 0) |
18 | 12, 14, 17 | 3eqtr4a 2887 |
. . . . . . . 8
⊢ (𝑡 = ∅ → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) |
19 | 18 | biantrud 527 |
. . . . . . 7
⊢ (𝑡 = ∅ → ((𝐴 × {0}) ∈
𝐿1 ↔ ((𝐴 × {0}) ∈ 𝐿1
∧ ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) |
20 | 11, 19 | bitr4d 274 |
. . . . . 6
⊢ (𝑡 = ∅ → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ (𝐴 × {0}) ∈
𝐿1)) |
21 | 3, 20 | imbi12d 336 |
. . . . 5
⊢ (𝑡 = ∅ → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1))) |
22 | 21 | imbi2d 332 |
. . . 4
⊢ (𝑡 = ∅ → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1)))) |
23 | | sseq1 3851 |
. . . . . 6
⊢ (𝑡 = 𝑤 → (𝑡 ⊆ 𝐵 ↔ 𝑤 ⊆ 𝐵)) |
24 | | sumeq1 14803 |
. . . . . . . . 9
⊢ (𝑡 = 𝑤 → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝑤 𝐶) |
25 | 24 | mpteq2dv 4970 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶)) |
26 | 25 | eleq1d 2891 |
. . . . . . 7
⊢ (𝑡 = 𝑤 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈
𝐿1)) |
27 | 24 | adantr 474 |
. . . . . . . . 9
⊢ ((𝑡 = 𝑤 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝑤 𝐶) |
28 | 27 | itgeq2dv 23954 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥) |
29 | | sumeq1 14803 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) |
30 | 28, 29 | eqeq12d 2840 |
. . . . . . 7
⊢ (𝑡 = 𝑤 → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) |
31 | 26, 30 | anbi12d 624 |
. . . . . 6
⊢ (𝑡 = 𝑤 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) |
32 | 23, 31 | imbi12d 336 |
. . . . 5
⊢ (𝑡 = 𝑤 → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)))) |
33 | 32 | imbi2d 332 |
. . . 4
⊢ (𝑡 = 𝑤 → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))))) |
34 | | sseq1 3851 |
. . . . . 6
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (𝑡 ⊆ 𝐵 ↔ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) |
35 | | sumeq1 14803 |
. . . . . . . . 9
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) |
36 | 35 | mpteq2dv 4970 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶)) |
37 | 36 | eleq1d 2891 |
. . . . . . 7
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈
𝐿1)) |
38 | 35 | adantr 474 |
. . . . . . . . 9
⊢ ((𝑡 = (𝑤 ∪ {𝑧}) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) |
39 | 38 | itgeq2dv 23954 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥) |
40 | | sumeq1 14803 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥) |
41 | 39, 40 | eqeq12d 2840 |
. . . . . . 7
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)) |
42 | 37, 41 | anbi12d 624 |
. . . . . 6
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))) |
43 | 34, 42 | imbi12d 336 |
. . . . 5
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
44 | 43 | imbi2d 332 |
. . . 4
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
45 | | sseq1 3851 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (𝑡 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵)) |
46 | | sumeq1 14803 |
. . . . . . . . 9
⊢ (𝑡 = 𝐵 → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
47 | 46 | mpteq2dv 4970 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶)) |
48 | 47 | eleq1d 2891 |
. . . . . . 7
⊢ (𝑡 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈
𝐿1)) |
49 | 46 | adantr 474 |
. . . . . . . . 9
⊢ ((𝑡 = 𝐵 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
50 | 49 | itgeq2dv 23954 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥) |
51 | | sumeq1 14803 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥) |
52 | 50, 51 | eqeq12d 2840 |
. . . . . . 7
⊢ (𝑡 = 𝐵 → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) |
53 | 48, 52 | anbi12d 624 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))) |
54 | 45, 53 | imbi12d 336 |
. . . . 5
⊢ (𝑡 = 𝐵 → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)))) |
55 | 54 | imbi2d 332 |
. . . 4
⊢ (𝑡 = 𝐵 → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))))) |
56 | | itgfsum.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
57 | | ibl0 23959 |
. . . . . 6
⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈
𝐿1) |
58 | 56, 57 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 × {0}) ∈
𝐿1) |
59 | 58 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1)) |
60 | | ssun1 4005 |
. . . . . . . . . 10
⊢ 𝑤 ⊆ (𝑤 ∪ {𝑧}) |
61 | | sstr 3835 |
. . . . . . . . . 10
⊢ ((𝑤 ⊆ (𝑤 ∪ {𝑧}) ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵) → 𝑤 ⊆ 𝐵) |
62 | 60, 61 | mpan 681 |
. . . . . . . . 9
⊢ ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → 𝑤 ⊆ 𝐵) |
63 | 62 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) |
64 | | nfcv 2969 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚𝐶 |
65 | | nfcsb1v 3773 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
66 | | csbeq1a 3766 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
67 | 64, 65, 66 | cbvsumi 14811 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
(𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 |
68 | | simprl 787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧 ∈ 𝑤) |
69 | | disjsn 4467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑤) |
70 | 68, 69 | sylibr 226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∩ {𝑧}) = ∅) |
71 | 70 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∩ {𝑧}) = ∅) |
72 | | eqidd 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) = (𝑤 ∪ {𝑧})) |
73 | 2 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin) |
74 | | simprr 789 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) ⊆ 𝐵) |
75 | | ssfi 8455 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 ∈ Fin ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵) → (𝑤 ∪ {𝑧}) ∈ Fin) |
76 | 73, 74, 75 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) ∈ Fin) |
77 | 76 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) ∈ Fin) |
78 | | simplrr 796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) ⊆ 𝐵) |
79 | 78 | sselda 3827 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → 𝑚 ∈ 𝐵) |
80 | | itgfsum.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
81 | | iblmbf 23940 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
83 | | itgfsum.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
84 | 83 | anass1rs 645 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
85 | 82, 84 | mbfmptcl 23809 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
86 | 85 | an32s 642 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
87 | 86 | ralrimiva 3175 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
88 | 87 | adantlr 706 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
89 | 64 | nfel1 2984 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑚 𝐶 ∈ ℂ |
90 | 65 | nfel1 2984 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
91 | 66 | eleq1d 2891 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
92 | 89, 90, 91 | cbvral 3379 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ ↔ ∀𝑚 ∈ 𝐵 ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
93 | 88, 92 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑚 ∈ 𝐵 ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
94 | 93 | r19.21bi 3141 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ 𝐵) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
95 | 79, 94 | syldan 585 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
96 | 71, 72, 77, 95 | fsumsplit 14855 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶)) |
97 | | vex 3417 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
98 | | csbeq1 3760 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
99 | 98 | eleq1d 2891 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑧 → (⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
100 | 74 | unssbd 4020 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵) |
101 | 97 | snss 4537 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ 𝐵 ↔ {𝑧} ⊆ 𝐵) |
102 | 100, 101 | sylibr 226 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 ∈ 𝐵) |
103 | 102 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
104 | 99, 93, 103 | rspcdva 3532 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
105 | 98 | sumsn 14859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ V ∧
⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) → Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
106 | 97, 104, 105 | sylancr 581 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
107 | 106 | oveq2d 6926 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶) = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
108 | 96, 107 | eqtrd 2861 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
109 | 67, 108 | syl5eq 2873 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
110 | 109 | mpteq2dva 4969 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
111 | | nfcv 2969 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) |
112 | | nfcsb1v 3773 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
113 | | nfcv 2969 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥
+ |
114 | | nfcsb1v 3773 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 |
115 | 112, 113,
114 | nfov 6940 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
116 | | csbeq1a 3766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
117 | | csbeq1a 3766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ⦋𝑧 / 𝑘⦌𝐶 = ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
118 | 116, 117 | oveq12d 6928 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) = (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
119 | 111, 115,
118 | cbvmpt 4974 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 ↦ (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
120 | 110, 119 | syl6eq 2877 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
121 | 120 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
122 | | sumex 14802 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑚 ∈
𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V |
123 | 122 | csbex 5020 |
. . . . . . . . . . . . . . 15
⊢
⦋𝑦 /
𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V |
124 | 123 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V) |
125 | 64, 65, 66 | cbvsumi 14811 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
126 | 125 | mpteq2i 4966 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
127 | | nfcv 2969 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
128 | 127, 112,
116 | cbvmpt 4974 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
129 | 126, 128 | eqtri 2849 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
130 | | simprl 787 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈
𝐿1) |
131 | 129, 130 | syl5eqelr 2911 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
132 | | elex 3429 |
. . . . . . . . . . . . . . . . . . 19
⊢
(⦋𝑧 /
𝑘⦌𝐶 ∈ ℂ →
⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
133 | 104, 132 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
134 | 133 | ralrimiva 3175 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
135 | 134 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
136 | | nfv 2013 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦⦋𝑧 / 𝑘⦌𝐶 ∈ V |
137 | 114 | nfel1 2984 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V |
138 | 117 | eleq1d 2891 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (⦋𝑧 / 𝑘⦌𝐶 ∈ V ↔ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V)) |
139 | 136, 137,
138 | cbvral 3379 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
140 | 135, 139 | sylib 210 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
141 | 140 | r19.21bi 3141 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
142 | | nfcv 2969 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦⦋𝑧 / 𝑘⦌𝐶 |
143 | 142, 114,
117 | cbvmpt 4974 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
144 | 98 | mpteq2dv 4970 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑧 → (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
145 | 144 | eleq1d 2891 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1)) |
146 | 80 | ralrimiva 3175 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
147 | | nfv 2013 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚(𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1 |
148 | | nfcv 2969 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝐴 |
149 | 148, 65 | nfmpt 4971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) |
150 | 149 | nfel1 2984 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1 |
151 | 66 | mpteq2dv 4970 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑚 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶)) |
152 | 151 | eleq1d 2891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑚 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1)) |
153 | 147, 150,
152 | cbvral 3379 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑘 ∈
𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
154 | 146, 153 | sylib 210 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
155 | 154 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
156 | 145, 155,
102 | rspcdva 3532 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
157 | 143, 156 | syl5eqelr 2911 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
158 | 157 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
159 | 124, 131,
141, 158 | ibladd 23993 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) ∈
𝐿1) |
160 | 121, 159 | eqeltrd 2906 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈
𝐿1) |
161 | 124, 131,
141, 158 | itgadd 23997 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) d𝑦 = (∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 + ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦)) |
162 | 118, 111,
115 | cbvitg 23948 |
. . . . . . . . . . . . . . 15
⊢
∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥 = ∫𝐴(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) d𝑦 |
163 | 116, 127,
112 | cbvitg 23948 |
. . . . . . . . . . . . . . . 16
⊢
∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 |
164 | 117, 142,
114 | cbvitg 23948 |
. . . . . . . . . . . . . . . 16
⊢
∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦 |
165 | 163, 164 | oveq12i 6922 |
. . . . . . . . . . . . . . 15
⊢
(∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) = (∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 + ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦) |
166 | 161, 162,
165 | 3eqtr4g 2886 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥 = (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥)) |
167 | 108 | itgeq2dv 23954 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥) |
168 | 167 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥) |
169 | | eqidd 2826 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) = (𝑤 ∪ {𝑧})) |
170 | 74 | sselda 3827 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → 𝑚 ∈ 𝐵) |
171 | 94 | an32s 642 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
172 | 155 | r19.21bi 3141 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
173 | 171, 172 | itgcl 23956 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
174 | 170, 173 | syldan 585 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
175 | 70, 169, 76, 174 | fsumsplit 14855 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
176 | 175 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
177 | | simprr 789 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) |
178 | | itgeq2 23950 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝐴 Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 → ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
179 | 125 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐴 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
180 | 178, 179 | mprg 3135 |
. . . . . . . . . . . . . . . . 17
⊢
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
181 | | nfcv 2969 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚∫𝐴𝐶 d𝑥 |
182 | 148, 65 | nfitg 23947 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
183 | 66 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 = 𝑚 ∧ 𝑥 ∈ 𝐴) → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
184 | 183 | itgeq2dv 23954 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → ∫𝐴𝐶 d𝑥 = ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
185 | 181, 182,
184 | cbvsumi 14811 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
𝑤 ∫𝐴𝐶 d𝑥 = Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
186 | 177, 180,
185 | 3eqtr3g 2884 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
187 | 104, 156 | itgcl 23956 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
188 | 187 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
189 | 98 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑧 ∧ 𝑥 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
190 | 189 | itgeq2dv 23954 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑧 → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
191 | 190 | sumsn 14859 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ V ∧ ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) → Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
192 | 97, 188, 191 | sylancr 581 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
193 | 192 | eqcomd 2831 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
194 | 186, 193 | oveq12d 6928 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
195 | 176, 194 | eqtr4d 2864 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥)) |
196 | 166, 168,
195 | 3eqtr4d 2871 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
197 | | itgeq2 23950 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 → ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
198 | 67 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶) |
199 | 197, 198 | mprg 3135 |
. . . . . . . . . . . . 13
⊢
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
200 | 181, 182,
184 | cbvsumi 14811 |
. . . . . . . . . . . . 13
⊢
Σ𝑘 ∈
(𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
201 | 196, 199,
200 | 3eqtr4g 2886 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥) |
202 | 160, 201 | jca 507 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)) |
203 | 202 | ex 403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))) |
204 | 203 | expr 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
205 | 204 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → (((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
206 | 63, 205 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
207 | 206 | expcom 404 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑤 → (𝜑 → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
208 | 207 | adantl 475 |
. . . . 5
⊢ ((𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤) → (𝜑 → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
209 | 208 | a2d 29 |
. . . 4
⊢ ((𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤) → ((𝜑 → (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) → (𝜑 → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
210 | 22, 33, 44, 55, 59, 209 | findcard2s 8476 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)))) |
211 | 2, 210 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))) |
212 | 1, 211 | mpi 20 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) |