Step | Hyp | Ref
| Expression |
1 | | ssid 3897 |
. 2
⊢ 𝐵 ⊆ 𝐵 |
2 | | itgfsum.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
3 | | sseq1 3900 |
. . . . . 6
⊢ (𝑡 = ∅ → (𝑡 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
4 | | itgz 24525 |
. . . . . . . 8
⊢
∫𝐴0 d𝑥 = 0 |
5 | | sumeq1 15131 |
. . . . . . . . . . 11
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
6 | | sum0 15164 |
. . . . . . . . . . 11
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
7 | 5, 6 | eqtrdi 2789 |
. . . . . . . . . 10
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 𝐶 = 0) |
8 | 7 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑡 = ∅ ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = 0) |
9 | 8 | itgeq2dv 24526 |
. . . . . . . 8
⊢ (𝑡 = ∅ → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴0 d𝑥) |
10 | | sumeq1 15131 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ ∅ ∫𝐴𝐶 d𝑥) |
11 | | sum0 15164 |
. . . . . . . . 9
⊢
Σ𝑘 ∈
∅ ∫𝐴𝐶 d𝑥 = 0 |
12 | 10, 11 | eqtrdi 2789 |
. . . . . . . 8
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = 0) |
13 | 4, 9, 12 | 3eqtr4a 2799 |
. . . . . . 7
⊢ (𝑡 = ∅ → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) |
14 | 7 | mpteq2dv 5123 |
. . . . . . . . . 10
⊢ (𝑡 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ 0)) |
15 | | fconstmpt 5579 |
. . . . . . . . . 10
⊢ (𝐴 × {0}) = (𝑥 ∈ 𝐴 ↦ 0) |
16 | 14, 15 | eqtr4di 2791 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝐴 × {0})) |
17 | 16 | eleq1d 2817 |
. . . . . . . 8
⊢ (𝑡 = ∅ → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝐴 × {0}) ∈
𝐿1)) |
18 | 17 | anbi1d 633 |
. . . . . . 7
⊢ (𝑡 = ∅ → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝐴 × {0}) ∈ 𝐿1
∧ ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) |
19 | 13, 18 | mpbiran2d 708 |
. . . . . 6
⊢ (𝑡 = ∅ → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ (𝐴 × {0}) ∈
𝐿1)) |
20 | 3, 19 | imbi12d 348 |
. . . . 5
⊢ (𝑡 = ∅ → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1))) |
21 | 20 | imbi2d 344 |
. . . 4
⊢ (𝑡 = ∅ → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1)))) |
22 | | sseq1 3900 |
. . . . . 6
⊢ (𝑡 = 𝑤 → (𝑡 ⊆ 𝐵 ↔ 𝑤 ⊆ 𝐵)) |
23 | | sumeq1 15131 |
. . . . . . . . 9
⊢ (𝑡 = 𝑤 → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝑤 𝐶) |
24 | 23 | mpteq2dv 5123 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶)) |
25 | 24 | eleq1d 2817 |
. . . . . . 7
⊢ (𝑡 = 𝑤 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈
𝐿1)) |
26 | 23 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑡 = 𝑤 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝑤 𝐶) |
27 | 26 | itgeq2dv 24526 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥) |
28 | | sumeq1 15131 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) |
29 | 27, 28 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑡 = 𝑤 → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) |
30 | 25, 29 | anbi12d 634 |
. . . . . 6
⊢ (𝑡 = 𝑤 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) |
31 | 22, 30 | imbi12d 348 |
. . . . 5
⊢ (𝑡 = 𝑤 → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)))) |
32 | 31 | imbi2d 344 |
. . . 4
⊢ (𝑡 = 𝑤 → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))))) |
33 | | sseq1 3900 |
. . . . . 6
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (𝑡 ⊆ 𝐵 ↔ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) |
34 | | sumeq1 15131 |
. . . . . . . . 9
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) |
35 | 34 | mpteq2dv 5123 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶)) |
36 | 35 | eleq1d 2817 |
. . . . . . 7
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈
𝐿1)) |
37 | 34 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑡 = (𝑤 ∪ {𝑧}) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) |
38 | 37 | itgeq2dv 24526 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥) |
39 | | sumeq1 15131 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥) |
40 | 38, 39 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)) |
41 | 36, 40 | anbi12d 634 |
. . . . . 6
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))) |
42 | 33, 41 | imbi12d 348 |
. . . . 5
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
43 | 42 | imbi2d 344 |
. . . 4
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
44 | | sseq1 3900 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (𝑡 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵)) |
45 | | sumeq1 15131 |
. . . . . . . . 9
⊢ (𝑡 = 𝐵 → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
46 | 45 | mpteq2dv 5123 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶)) |
47 | 46 | eleq1d 2817 |
. . . . . . 7
⊢ (𝑡 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈
𝐿1)) |
48 | 45 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑡 = 𝐵 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
49 | 48 | itgeq2dv 24526 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥) |
50 | | sumeq1 15131 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥) |
51 | 49, 50 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑡 = 𝐵 → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) |
52 | 47, 51 | anbi12d 634 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))) |
53 | 44, 52 | imbi12d 348 |
. . . . 5
⊢ (𝑡 = 𝐵 → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)))) |
54 | 53 | imbi2d 344 |
. . . 4
⊢ (𝑡 = 𝐵 → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))))) |
55 | | itgfsum.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
56 | | ibl0 24531 |
. . . . . 6
⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈
𝐿1) |
57 | 55, 56 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 × {0}) ∈
𝐿1) |
58 | 57 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1)) |
59 | | ssun1 4060 |
. . . . . . . . . 10
⊢ 𝑤 ⊆ (𝑤 ∪ {𝑧}) |
60 | | sstr 3883 |
. . . . . . . . . 10
⊢ ((𝑤 ⊆ (𝑤 ∪ {𝑧}) ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵) → 𝑤 ⊆ 𝐵) |
61 | 59, 60 | mpan 690 |
. . . . . . . . 9
⊢ ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → 𝑤 ⊆ 𝐵) |
62 | 61 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) |
63 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚𝐶 |
64 | | nfcsb1v 3812 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
65 | | csbeq1a 3802 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
66 | 63, 64, 65 | cbvsumi 15140 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
(𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 |
67 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧 ∈ 𝑤) |
68 | | disjsn 4599 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑤) |
69 | 67, 68 | sylibr 237 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∩ {𝑧}) = ∅) |
70 | 69 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∩ {𝑧}) = ∅) |
71 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) = (𝑤 ∪ {𝑧})) |
72 | 2 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin) |
73 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) ⊆ 𝐵) |
74 | 72, 73 | ssfid 8812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) ∈ Fin) |
75 | 74 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) ∈ Fin) |
76 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) ⊆ 𝐵) |
77 | 76 | sselda 3875 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → 𝑚 ∈ 𝐵) |
78 | | itgfsum.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
79 | | iblmbf 24512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
80 | 78, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
81 | | itgfsum.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
82 | 81 | anass1rs 655 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
83 | 80, 82 | mbfmptcl 24381 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
84 | 83 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
85 | 84 | ralrimiva 3096 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
86 | 85 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
87 | 63 | nfel1 2915 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑚 𝐶 ∈ ℂ |
88 | 64 | nfel1 2915 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
89 | 65 | eleq1d 2817 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
90 | 87, 88, 89 | cbvralw 3339 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ ↔ ∀𝑚 ∈ 𝐵 ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
91 | 86, 90 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑚 ∈ 𝐵 ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
92 | 91 | r19.21bi 3120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ 𝐵) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
93 | 77, 92 | syldan 594 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
94 | 70, 71, 75, 93 | fsumsplit 15183 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶)) |
95 | | vex 3401 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
96 | | csbeq1 3791 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
97 | 96 | eleq1d 2817 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑧 → (⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
98 | 73 | unssbd 4076 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵) |
99 | 95 | snss 4671 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ 𝐵 ↔ {𝑧} ⊆ 𝐵) |
100 | 98, 99 | sylibr 237 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 ∈ 𝐵) |
101 | 100 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
102 | 97, 91, 101 | rspcdva 3526 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
103 | 96 | sumsn 15187 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ V ∧
⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) → Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
104 | 95, 102, 103 | sylancr 590 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
105 | 104 | oveq2d 7180 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶) = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
106 | 94, 105 | eqtrd 2773 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
107 | 66, 106 | syl5eq 2785 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
108 | 107 | mpteq2dva 5122 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
109 | | nfcv 2899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) |
110 | | nfcsb1v 3812 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
111 | | nfcv 2899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥
+ |
112 | | nfcsb1v 3812 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 |
113 | 110, 111,
112 | nfov 7194 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
114 | | csbeq1a 3802 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
115 | | csbeq1a 3802 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ⦋𝑧 / 𝑘⦌𝐶 = ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
116 | 114, 115 | oveq12d 7182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) = (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
117 | 109, 113,
116 | cbvmpt 5128 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 ↦ (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
118 | 108, 117 | eqtrdi 2789 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
119 | 118 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
120 | | sumex 15130 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑚 ∈
𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V |
121 | 120 | csbex 5176 |
. . . . . . . . . . . . . . 15
⊢
⦋𝑦 /
𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V |
122 | 121 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V) |
123 | 63, 64, 65 | cbvsumi 15140 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
124 | 123 | mpteq2i 5119 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
125 | | nfcv 2899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
126 | 125, 110,
114 | cbvmpt 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
127 | 124, 126 | eqtri 2761 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
128 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈
𝐿1) |
129 | 127, 128 | eqeltrrid 2838 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
130 | 102 | elexd 3417 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
131 | 130 | ralrimiva 3096 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
132 | 131 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
133 | | nfv 1920 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦⦋𝑧 / 𝑘⦌𝐶 ∈ V |
134 | 112 | nfel1 2915 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V |
135 | 115 | eleq1d 2817 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (⦋𝑧 / 𝑘⦌𝐶 ∈ V ↔ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V)) |
136 | 133, 134,
135 | cbvralw 3339 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
137 | 132, 136 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
138 | 137 | r19.21bi 3120 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
139 | | nfcv 2899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦⦋𝑧 / 𝑘⦌𝐶 |
140 | 139, 112,
115 | cbvmpt 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
141 | 96 | mpteq2dv 5123 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑧 → (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
142 | 141 | eleq1d 2817 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1)) |
143 | 78 | ralrimiva 3096 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
144 | | nfv 1920 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚(𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1 |
145 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝐴 |
146 | 145, 64 | nfmpt 5124 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) |
147 | 146 | nfel1 2915 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1 |
148 | 65 | mpteq2dv 5123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑚 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶)) |
149 | 148 | eleq1d 2817 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑚 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1)) |
150 | 144, 147,
149 | cbvralw 3339 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑘 ∈
𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
151 | 143, 150 | sylib 221 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
152 | 151 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
153 | 142, 152,
100 | rspcdva 3526 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
154 | 140, 153 | eqeltrrid 2838 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
155 | 154 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
156 | 122, 129,
138, 155 | ibladd 24565 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) ∈
𝐿1) |
157 | 119, 156 | eqeltrd 2833 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈
𝐿1) |
158 | 122, 129,
138, 155 | itgadd 24569 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) d𝑦 = (∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 + ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦)) |
159 | 116, 109,
113 | cbvitg 24520 |
. . . . . . . . . . . . . . 15
⊢
∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥 = ∫𝐴(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) d𝑦 |
160 | 114, 125,
110 | cbvitg 24520 |
. . . . . . . . . . . . . . . 16
⊢
∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 |
161 | 115, 139,
112 | cbvitg 24520 |
. . . . . . . . . . . . . . . 16
⊢
∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦 |
162 | 160, 161 | oveq12i 7176 |
. . . . . . . . . . . . . . 15
⊢
(∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) = (∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 + ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦) |
163 | 158, 159,
162 | 3eqtr4g 2798 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥 = (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥)) |
164 | 106 | itgeq2dv 24526 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥) |
165 | 164 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥) |
166 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) = (𝑤 ∪ {𝑧})) |
167 | 73 | sselda 3875 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → 𝑚 ∈ 𝐵) |
168 | 92 | an32s 652 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
169 | 152 | r19.21bi 3120 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
170 | 168, 169 | itgcl 24528 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
171 | 167, 170 | syldan 594 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
172 | 69, 166, 74, 171 | fsumsplit 15183 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
173 | 172 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
174 | | simprr 773 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) |
175 | | itgeq2 24522 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝐴 Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 → ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
176 | 123 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐴 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
177 | 175, 176 | mprg 3067 |
. . . . . . . . . . . . . . . . 17
⊢
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
178 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚∫𝐴𝐶 d𝑥 |
179 | 145, 64 | nfitg 24519 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
180 | 65 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 = 𝑚 ∧ 𝑥 ∈ 𝐴) → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
181 | 180 | itgeq2dv 24526 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → ∫𝐴𝐶 d𝑥 = ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
182 | 178, 179,
181 | cbvsumi 15140 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
𝑤 ∫𝐴𝐶 d𝑥 = Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
183 | 174, 177,
182 | 3eqtr3g 2796 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
184 | 102, 153 | itgcl 24528 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
185 | 184 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
186 | 96 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑧 ∧ 𝑥 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
187 | 186 | itgeq2dv 24526 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑧 → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
188 | 187 | sumsn 15187 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ V ∧ ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) → Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
189 | 95, 185, 188 | sylancr 590 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
190 | 189 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
191 | 183, 190 | oveq12d 7182 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
192 | 173, 191 | eqtr4d 2776 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥)) |
193 | 163, 165,
192 | 3eqtr4d 2783 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
194 | | itgeq2 24522 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 → ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
195 | 66 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶) |
196 | 194, 195 | mprg 3067 |
. . . . . . . . . . . . 13
⊢
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
197 | 178, 179,
181 | cbvsumi 15140 |
. . . . . . . . . . . . 13
⊢
Σ𝑘 ∈
(𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
198 | 193, 196,
197 | 3eqtr4g 2798 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥) |
199 | 157, 198 | jca 515 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)) |
200 | 199 | ex 416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))) |
201 | 200 | expr 460 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
202 | 201 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → (((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
203 | 62, 202 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
204 | 203 | expcom 417 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑤 → (𝜑 → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
205 | 204 | adantl 485 |
. . . . 5
⊢ ((𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤) → (𝜑 → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
206 | 205 | a2d 29 |
. . . 4
⊢ ((𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤) → ((𝜑 → (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) → (𝜑 → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
207 | 21, 32, 43, 54, 58, 206 | findcard2s 8757 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)))) |
208 | 2, 207 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))) |
209 | 1, 208 | mpi 20 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) |