| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmon | Structured version Visualization version GIF version | ||
| Description: In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon 49437. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincmon.m | ⊢ 𝑀 = (Mono‘𝐶) |
| Ref | Expression |
|---|---|
| thincmon | ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑧 ∈ 𝐵) | |
| 2 | thincid.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑋 ∈ 𝐵) |
| 4 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋)) | |
| 5 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ℎ ∈ (𝑧𝐻𝑋)) | |
| 6 | thincid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | thincid.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 8 | thincid.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ ThinCat) |
| 10 | 1, 3, 4, 5, 6, 7, 9 | thincmo2 49279 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 = ℎ) |
| 11 | 10 | a1d 25 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 12 | 11 | ralrimivvva 3191 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 13 | eqid 2736 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 14 | thincmon.m | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
| 15 | 8 | thinccd 49276 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 16 | thincmon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | 6, 7, 13, 14, 15, 2, 16 | ismon2 17752 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)))) |
| 18 | 12, 17 | mpbiran2d 708 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ 𝑓 ∈ (𝑋𝐻𝑌))) |
| 19 | 18 | eqrdv 2734 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 〈cop 4612 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 compcco 17288 Monocmon 17746 ThinCatcthinc 49270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-cat 17685 df-mon 17748 df-thinc 49271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |