| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmon | Structured version Visualization version GIF version | ||
| Description: In a thin category, all morphisms are monomorphisms. Example 7.33(9) of [Adamek] p. 110. The converse does not hold. See grptcmon 49582. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincmon.m | ⊢ 𝑀 = (Mono‘𝐶) |
| Ref | Expression |
|---|---|
| thincmon | ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑧 ∈ 𝐵) | |
| 2 | thincid.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑋 ∈ 𝐵) |
| 4 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋)) | |
| 5 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ℎ ∈ (𝑧𝐻𝑋)) | |
| 6 | thincid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | thincid.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 8 | thincid.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ ThinCat) |
| 10 | 1, 3, 4, 5, 6, 7, 9 | thincmo2 49415 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 = ℎ) |
| 11 | 10 | a1d 25 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 12 | 11 | ralrimivvva 3183 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 13 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 14 | thincmon.m | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
| 15 | 8 | thinccd 49412 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 16 | thincmon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | 6, 7, 13, 14, 15, 2, 16 | ismon2 17696 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝑓(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)))) |
| 18 | 12, 17 | mpbiran2d 708 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ 𝑓 ∈ (𝑋𝐻𝑌))) |
| 19 | 18 | eqrdv 2727 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4595 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Monocmon 17690 ThinCatcthinc 49406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-cat 17629 df-mon 17692 df-thinc 49407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |