Proof of Theorem funsnfsupp
Step | Hyp | Ref
| Expression |
1 | | simpl 486 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) |
2 | 1 | anim2i 619 |
. . . . . . 7
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → (𝑍 ∈ V ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊))) |
3 | 2 | ancomd 465 |
. . . . . 6
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ 𝑍 ∈ V)) |
4 | | df-3an 1086 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ V) ↔ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ 𝑍 ∈ V)) |
5 | 3, 4 | sylibr 237 |
. . . . 5
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ V)) |
6 | | snopfsupp 8889 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ V) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
8 | | funsng 6386 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → Fun {〈𝑋, 𝑌〉}) |
9 | | simpl 486 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑋 ∉ dom 𝐹) → Fun 𝐹) |
10 | 8, 9 | anim12ci 616 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → (Fun 𝐹 ∧ Fun {〈𝑋, 𝑌〉})) |
11 | | dmsnopg 6042 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ 𝑊 → dom {〈𝑋, 𝑌〉} = {𝑋}) |
12 | 11 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → dom {〈𝑋, 𝑌〉} = {𝑋}) |
13 | 12 | ineq2d 4117 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (dom 𝐹 ∩ dom {〈𝑋, 𝑌〉}) = (dom 𝐹 ∩ {𝑋})) |
14 | | df-nel 3056 |
. . . . . . . . . . 11
⊢ (𝑋 ∉ dom 𝐹 ↔ ¬ 𝑋 ∈ dom 𝐹) |
15 | | disjsn 4604 |
. . . . . . . . . . 11
⊢ ((dom
𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹) |
16 | 14, 15 | sylbb2 241 |
. . . . . . . . . 10
⊢ (𝑋 ∉ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅) |
17 | 16 | adantl 485 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑋 ∉ dom 𝐹) → (dom 𝐹 ∩ {𝑋}) = ∅) |
18 | 13, 17 | sylan9eq 2813 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → (dom 𝐹 ∩ dom {〈𝑋, 𝑌〉}) = ∅) |
19 | 10, 18 | jca 515 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → ((Fun 𝐹 ∧ Fun {〈𝑋, 𝑌〉}) ∧ (dom 𝐹 ∩ dom {〈𝑋, 𝑌〉}) = ∅)) |
20 | 19 | adantl 485 |
. . . . . 6
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → ((Fun 𝐹 ∧ Fun {〈𝑋, 𝑌〉}) ∧ (dom 𝐹 ∩ dom {〈𝑋, 𝑌〉}) = ∅)) |
21 | | funun 6381 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ Fun {〈𝑋, 𝑌〉}) ∧ (dom 𝐹 ∩ dom {〈𝑋, 𝑌〉}) = ∅) → Fun (𝐹 ∪ {〈𝑋, 𝑌〉})) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → Fun (𝐹 ∪ {〈𝑋, 𝑌〉})) |
23 | 22 | fsuppunbi 8887 |
. . . 4
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ {〈𝑋, 𝑌〉} finSupp 𝑍))) |
24 | 7, 23 | mpbiran2d 707 |
. . 3
⊢ ((𝑍 ∈ V ∧ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍)) |
25 | 24 | ex 416 |
. 2
⊢ (𝑍 ∈ V → (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍))) |
26 | | relfsupp 8868 |
. . . . 5
⊢ Rel
finSupp |
27 | 26 | brrelex2i 5578 |
. . . 4
⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 → 𝑍 ∈ V) |
28 | 26 | brrelex2i 5578 |
. . . 4
⊢ (𝐹 finSupp 𝑍 → 𝑍 ∈ V) |
29 | 27, 28 | pm5.21ni 382 |
. . 3
⊢ (¬
𝑍 ∈ V → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍)) |
30 | 29 | a1d 25 |
. 2
⊢ (¬
𝑍 ∈ V → (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍))) |
31 | 25, 30 | pm2.61i 185 |
1
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍)) |