MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsnfsupp Structured version   Visualization version   GIF version

Theorem funsnfsupp 9430
Description: Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.)
Assertion
Ref Expression
funsnfsupp (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))

Proof of Theorem funsnfsupp
StepHypRef Expression
1 simpl 482 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (𝑋𝑉𝑌𝑊))
21anim2i 617 . . . . . . 7 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑍 ∈ V ∧ (𝑋𝑉𝑌𝑊)))
32ancomd 461 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
4 df-3an 1088 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) ↔ ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
53, 4sylibr 234 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑋𝑉𝑌𝑊𝑍 ∈ V))
6 snopfsupp 9429 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
75, 6syl 17 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
8 funsng 6619 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → Fun {⟨𝑋, 𝑌⟩})
9 simpl 482 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → Fun 𝐹)
108, 9anim12ci 614 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}))
11 dmsnopg 6235 . . . . . . . . . . 11 (𝑌𝑊 → dom {⟨𝑋, 𝑌⟩} = {𝑋})
1211adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑊) → dom {⟨𝑋, 𝑌⟩} = {𝑋})
1312ineq2d 4228 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = (dom 𝐹 ∩ {𝑋}))
14 df-nel 3045 . . . . . . . . . . 11 (𝑋 ∉ dom 𝐹 ↔ ¬ 𝑋 ∈ dom 𝐹)
15 disjsn 4716 . . . . . . . . . . 11 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
1614, 15sylbb2 238 . . . . . . . . . 10 (𝑋 ∉ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
1716adantl 481 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → (dom 𝐹 ∩ {𝑋}) = ∅)
1813, 17sylan9eq 2795 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅)
1910, 18jca 511 . . . . . . 7 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
2019adantl 481 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
21 funun 6614 . . . . . 6 (((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
2220, 21syl 17 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
2322fsuppunbi 9427 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ {⟨𝑋, 𝑌⟩} finSupp 𝑍)))
247, 23mpbiran2d 708 . . 3 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
2524ex 412 . 2 (𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
26 relfsupp 9401 . . . . 5 Rel finSupp
2726brrelex2i 5746 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝑍 ∈ V)
2826brrelex2i 5746 . . . 4 (𝐹 finSupp 𝑍𝑍 ∈ V)
2927, 28pm5.21ni 377 . . 3 𝑍 ∈ V → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
3029a1d 25 . 2 𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
3125, 30pm2.61i 182 1 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wnel 3044  Vcvv 3478  cun 3961  cin 3962  c0 4339  {csn 4631  cop 4637   class class class wbr 5148  dom cdm 5689  Fun wfun 6557   finSupp cfsupp 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-supp 8185  df-1o 8505  df-en 8985  df-fin 8988  df-fsupp 9400
This theorem is referenced by:  islindf4  21876
  Copyright terms: Public domain W3C validator