MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsnfsupp Structured version   Visualization version   GIF version

Theorem funsnfsupp 9375
Description: Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.)
Assertion
Ref Expression
funsnfsupp (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))

Proof of Theorem funsnfsupp
StepHypRef Expression
1 simpl 484 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (𝑋𝑉𝑌𝑊))
21anim2i 618 . . . . . . 7 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑍 ∈ V ∧ (𝑋𝑉𝑌𝑊)))
32ancomd 463 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
4 df-3an 1090 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) ↔ ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
53, 4sylibr 233 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑋𝑉𝑌𝑊𝑍 ∈ V))
6 snopfsupp 9374 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
75, 6syl 17 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
8 funsng 6591 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → Fun {⟨𝑋, 𝑌⟩})
9 simpl 484 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → Fun 𝐹)
108, 9anim12ci 615 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}))
11 dmsnopg 6204 . . . . . . . . . . 11 (𝑌𝑊 → dom {⟨𝑋, 𝑌⟩} = {𝑋})
1211adantl 483 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑊) → dom {⟨𝑋, 𝑌⟩} = {𝑋})
1312ineq2d 4210 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = (dom 𝐹 ∩ {𝑋}))
14 df-nel 3048 . . . . . . . . . . 11 (𝑋 ∉ dom 𝐹 ↔ ¬ 𝑋 ∈ dom 𝐹)
15 disjsn 4711 . . . . . . . . . . 11 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
1614, 15sylbb2 237 . . . . . . . . . 10 (𝑋 ∉ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
1716adantl 483 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → (dom 𝐹 ∩ {𝑋}) = ∅)
1813, 17sylan9eq 2793 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅)
1910, 18jca 513 . . . . . . 7 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
2019adantl 483 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
21 funun 6586 . . . . . 6 (((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
2220, 21syl 17 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
2322fsuppunbi 9372 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ {⟨𝑋, 𝑌⟩} finSupp 𝑍)))
247, 23mpbiran2d 707 . . 3 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
2524ex 414 . 2 (𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
26 relfsupp 9351 . . . . 5 Rel finSupp
2726brrelex2i 5728 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝑍 ∈ V)
2826brrelex2i 5728 . . . 4 (𝐹 finSupp 𝑍𝑍 ∈ V)
2927, 28pm5.21ni 379 . . 3 𝑍 ∈ V → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
3029a1d 25 . 2 𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
3125, 30pm2.61i 182 1 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wnel 3047  Vcvv 3475  cun 3944  cin 3945  c0 4320  {csn 4624  cop 4630   class class class wbr 5144  dom cdm 5672  Fun wfun 6529   finSupp cfsupp 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-supp 8134  df-1o 8453  df-en 8928  df-fin 8931  df-fsupp 9350
This theorem is referenced by:  islindf4  21366
  Copyright terms: Public domain W3C validator