MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discld Structured version   Visualization version   GIF version

Theorem discld 23025
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)

Proof of Theorem discld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difss 4111 . . . . 5 (𝐴𝑥) ⊆ 𝐴
2 elpw2g 5303 . . . . 5 (𝐴𝑉 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
31, 2mpbiri 258 . . . 4 (𝐴𝑉 → (𝐴𝑥) ∈ 𝒫 𝐴)
4 distop 22931 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
5 unipw 5425 . . . . . . 7 𝒫 𝐴 = 𝐴
65eqcomi 2744 . . . . . 6 𝐴 = 𝒫 𝐴
76iscld 22963 . . . . 5 (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
84, 7syl 17 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
93, 8mpbiran2d 708 . . 3 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥𝐴))
10 velpw 4580 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
119, 10bitr4di 289 . 2 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴))
1211eqrdv 2733 1 (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3923  wss 3926  𝒫 cpw 4575   cuni 4883  cfv 6530  Topctop 22829  Clsdccld 22952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-top 22830  df-cld 22955
This theorem is referenced by:  sn0cld  23026
  Copyright terms: Public domain W3C validator