MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discld Structured version   Visualization version   GIF version

Theorem discld 22815
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)

Proof of Theorem discld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difss 4132 . . . . 5 (𝐴𝑥) ⊆ 𝐴
2 elpw2g 5345 . . . . 5 (𝐴𝑉 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
31, 2mpbiri 257 . . . 4 (𝐴𝑉 → (𝐴𝑥) ∈ 𝒫 𝐴)
4 distop 22720 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
5 unipw 5451 . . . . . . 7 𝒫 𝐴 = 𝐴
65eqcomi 2739 . . . . . 6 𝐴 = 𝒫 𝐴
76iscld 22753 . . . . 5 (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
84, 7syl 17 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
93, 8mpbiran2d 704 . . 3 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥𝐴))
10 velpw 4608 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
119, 10bitr4di 288 . 2 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴))
1211eqrdv 2728 1 (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  cdif 3946  wss 3949  𝒫 cpw 4603   cuni 4909  cfv 6544  Topctop 22617  Clsdccld 22742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-top 22618  df-cld 22745
This theorem is referenced by:  sn0cld  22816
  Copyright terms: Public domain W3C validator