| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > discld | Structured version Visualization version GIF version | ||
| Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| discld | ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4085 | . . . . 5 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
| 2 | elpw2g 5275 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑥) ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴) |
| 4 | distop 22913 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
| 5 | unipw 5395 | . . . . . . 7 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 6 | 5 | eqcomi 2742 | . . . . . 6 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 7 | 6 | iscld 22945 | . . . . 5 ⊢ (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
| 9 | 3, 8 | mpbiran2d 708 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ⊆ 𝐴)) |
| 10 | velpw 4556 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 11 | 9, 10 | bitr4di 289 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴)) |
| 12 | 11 | eqrdv 2731 | 1 ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 ‘cfv 6488 Topctop 22811 Clsdccld 22934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-top 22812 df-cld 22937 |
| This theorem is referenced by: sn0cld 23008 |
| Copyright terms: Public domain | W3C validator |