![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > discld | Structured version Visualization version GIF version |
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.) |
Ref | Expression |
---|---|
discld | ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4130 | . . . . 5 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
2 | elpw2g 5350 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑥) ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 257 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴) |
4 | distop 22981 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
5 | unipw 5455 | . . . . . . 7 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
6 | 5 | eqcomi 2734 | . . . . . 6 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
7 | 6 | iscld 23014 | . . . . 5 ⊢ (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
9 | 3, 8 | mpbiran2d 706 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ⊆ 𝐴)) |
10 | velpw 4611 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
11 | 9, 10 | bitr4di 288 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴)) |
12 | 11 | eqrdv 2723 | 1 ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3943 ⊆ wss 3946 𝒫 cpw 4606 ∪ cuni 4912 ‘cfv 6553 Topctop 22878 Clsdccld 23003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-iota 6505 df-fun 6555 df-fv 6561 df-top 22879 df-cld 23006 |
This theorem is referenced by: sn0cld 23077 |
Copyright terms: Public domain | W3C validator |