MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discld Structured version   Visualization version   GIF version

Theorem discld 22240
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)

Proof of Theorem discld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difss 4066 . . . . 5 (𝐴𝑥) ⊆ 𝐴
2 elpw2g 5268 . . . . 5 (𝐴𝑉 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
31, 2mpbiri 257 . . . 4 (𝐴𝑉 → (𝐴𝑥) ∈ 𝒫 𝐴)
4 distop 22145 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
5 unipw 5366 . . . . . . 7 𝒫 𝐴 = 𝐴
65eqcomi 2747 . . . . . 6 𝐴 = 𝒫 𝐴
76iscld 22178 . . . . 5 (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
84, 7syl 17 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥𝐴 ∧ (𝐴𝑥) ∈ 𝒫 𝐴)))
93, 8mpbiran2d 705 . . 3 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥𝐴))
10 velpw 4538 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
119, 10bitr4di 289 . 2 (𝐴𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴))
1211eqrdv 2736 1 (𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cdif 3884  wss 3887  𝒫 cpw 4533   cuni 4839  cfv 6433  Topctop 22042  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-cld 22170
This theorem is referenced by:  sn0cld  22241
  Copyright terms: Public domain W3C validator