Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > discld | Structured version Visualization version GIF version |
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.) |
Ref | Expression |
---|---|
discld | ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4066 | . . . . 5 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
2 | elpw2g 5268 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝑥) ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 257 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴) |
4 | distop 22145 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
5 | unipw 5366 | . . . . . . 7 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
6 | 5 | eqcomi 2747 | . . . . . 6 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
7 | 6 | iscld 22178 | . . . . 5 ⊢ (𝒫 𝐴 ∈ Top → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ (𝑥 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝒫 𝐴))) |
9 | 3, 8 | mpbiran2d 705 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ⊆ 𝐴)) |
10 | velpw 4538 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
11 | 9, 10 | bitr4di 289 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Clsd‘𝒫 𝐴) ↔ 𝑥 ∈ 𝒫 𝐴)) |
12 | 11 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 Clsdccld 22167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-top 22043 df-cld 22170 |
This theorem is referenced by: sn0cld 22241 |
Copyright terms: Public domain | W3C validator |