![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem6 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem7 47679. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
iscnrm3rlem5.3 | ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) |
iscnrm3rlem6.4 | ⊢ (𝜑 → 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) |
Ref | Expression |
---|---|
iscnrm3rlem6 | ⊢ (𝜑 → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3rlem6.4 | . 2 ⊢ (𝜑 → 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) | |
2 | iscnrm3rlem4.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | iscnrm3rlem4.2 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
4 | iscnrm3rlem5.3 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) | |
5 | 2, 3, 4 | iscnrm3rlem5 47677 | . . 3 ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
6 | restopn2 22914 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) | |
7 | 2, 5, 6 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) |
8 | 1, 7 | mpbiran2d 705 | 1 ⊢ (𝜑 → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂 ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 ∪ cuni 4908 ‘cfv 6543 (class class class)co 7412 ↾t crest 17373 Topctop 22628 clsccl 22755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-en 8946 df-fin 8949 df-fi 9412 df-rest 17375 df-topgen 17396 df-top 22629 df-topon 22646 df-bases 22682 df-cld 22756 df-cls 22758 |
This theorem is referenced by: iscnrm3rlem7 47679 |
Copyright terms: Public domain | W3C validator |