| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincepi | Structured version Visualization version GIF version | ||
| Description: In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 49583. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
| Ref | Expression |
|---|---|
| thincepi | ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmon.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑌 ∈ 𝐵) |
| 3 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑧 ∈ 𝐵) | |
| 4 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑔 ∈ (𝑌𝐻𝑧)) | |
| 5 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → ℎ ∈ (𝑌𝐻𝑧)) | |
| 6 | thincid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | thincid.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 8 | thincid.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝐶 ∈ ThinCat) |
| 10 | 2, 3, 4, 5, 6, 7, 9 | thincmo2 49415 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑔 = ℎ) |
| 11 | 10 | a1d 25 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → ((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)) |
| 12 | 11 | ralrimivvva 3175 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)) |
| 13 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 14 | thincepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
| 15 | 8 | thinccd 49412 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 16 | thincid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 17 | 6, 7, 13, 14, 15, 16, 1 | isepi2 17648 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐸𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)))) |
| 18 | 12, 17 | mpbiran2d 708 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐸𝑌) ↔ 𝑓 ∈ (𝑋𝐻𝑌))) |
| 19 | 18 | eqrdv 2727 | 1 ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4583 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Hom chom 17172 compcco 17173 Epicepi 17636 ThinCatcthinc 49406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-oppc 17618 df-mon 17637 df-epi 17638 df-thinc 49407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |