![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincepi | Structured version Visualization version GIF version |
Description: In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 48418. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
Ref | Expression |
---|---|
thincepi | ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincmon.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
2 | 1 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑌 ∈ 𝐵) |
3 | simpr1 1191 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑧 ∈ 𝐵) | |
4 | simpr2 1192 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑔 ∈ (𝑌𝐻𝑧)) | |
5 | simpr3 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → ℎ ∈ (𝑌𝐻𝑧)) | |
6 | thincid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
7 | thincid.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | thincid.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
9 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝐶 ∈ ThinCat) |
10 | 2, 3, 4, 5, 6, 7, 9 | thincmo2 48349 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑔 = ℎ) |
11 | 10 | a1d 25 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → ((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)) |
12 | 11 | ralrimivvva 3194 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)) |
13 | eqid 2726 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
14 | thincepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
15 | 8 | thinccd 48346 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
16 | thincid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
17 | 6, 7, 13, 14, 15, 16, 1 | isepi2 17757 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐸𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑋, 𝑌〉(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)))) |
18 | 12, 17 | mpbiran2d 706 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐸𝑌) ↔ 𝑓 ∈ (𝑋𝐻𝑌))) |
19 | 18 | eqrdv 2724 | 1 ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 〈cop 4639 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 Hom chom 17277 compcco 17278 Epicepi 17745 ThinCatcthinc 48340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-hom 17290 df-cco 17291 df-cat 17681 df-cid 17682 df-oppc 17725 df-mon 17746 df-epi 17747 df-thinc 48341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |