![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincepi | Structured version Visualization version GIF version |
Description: In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 47871. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
Ref | Expression |
---|---|
thincepi | ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincmon.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑌 ∈ 𝐵) |
3 | simpr1 1191 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑧 ∈ 𝐵) | |
4 | simpr2 1192 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑔 ∈ (𝑌𝐻𝑧)) | |
5 | simpr3 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → ℎ ∈ (𝑌𝐻𝑧)) | |
6 | thincid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
7 | thincid.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | thincid.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝐶 ∈ ThinCat) |
10 | 2, 3, 4, 5, 6, 7, 9 | thincmo2 47802 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → 𝑔 = ℎ) |
11 | 10 | a1d 25 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧) ∧ ℎ ∈ (𝑌𝐻𝑧))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝑓) = (ℎ(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)) |
12 | 11 | ralrimivvva 3195 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝑓) = (ℎ(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)) |
13 | eqid 2724 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
14 | thincepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
15 | 8 | thinccd 47799 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
16 | thincid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
17 | 6, 7, 13, 14, 15, 16, 1 | isepi2 17684 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐸𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝑓) = (ℎ(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝑓) → 𝑔 = ℎ)))) |
18 | 12, 17 | mpbiran2d 705 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐸𝑌) ↔ 𝑓 ∈ (𝑋𝐻𝑌))) |
19 | 18 | eqrdv 2722 | 1 ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ⟨cop 4626 ‘cfv 6533 (class class class)co 7401 Basecbs 17140 Hom chom 17204 compcco 17205 Epicepi 17672 ThinCatcthinc 47793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-cat 17608 df-cid 17609 df-oppc 17652 df-mon 17673 df-epi 17674 df-thinc 47794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |