Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cover2 Structured version   Visualization version   GIF version

Theorem cover2 37723
Description: Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
cover2.1 𝐵 ∈ V
cover2.2 𝐴 = 𝐵
Assertion
Ref Expression
cover2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
Distinct variable groups:   𝜑,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐴,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem cover2
StepHypRef Expression
1 cover2.1 . . . 4 𝐵 ∈ V
2 ssrab2 4079 . . . 4 {𝑦𝐵𝜑} ⊆ 𝐵
31, 2elpwi2 5334 . . 3 {𝑦𝐵𝜑} ∈ 𝒫 𝐵
4 nfra1 3283 . . . . 5 𝑥𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑)
52unissi 4915 . . . . . . . 8 {𝑦𝐵𝜑} ⊆ 𝐵
65sseli 3978 . . . . . . 7 (𝑥 {𝑦𝐵𝜑} → 𝑥 𝐵)
7 cover2.2 . . . . . . 7 𝐴 = 𝐵
86, 7eleqtrrdi 2851 . . . . . 6 (𝑥 {𝑦𝐵𝜑} → 𝑥𝐴)
9 rsp 3246 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → (𝑥𝐴 → ∃𝑦𝐵 (𝑥𝑦𝜑)))
10 elunirab 4921 . . . . . . 7 (𝑥 {𝑦𝐵𝜑} ↔ ∃𝑦𝐵 (𝑥𝑦𝜑))
119, 10imbitrrdi 252 . . . . . 6 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → (𝑥𝐴𝑥 {𝑦𝐵𝜑}))
128, 11impbid2 226 . . . . 5 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → (𝑥 {𝑦𝐵𝜑} ↔ 𝑥𝐴))
134, 12alrimi 2212 . . . 4 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → ∀𝑥(𝑥 {𝑦𝐵𝜑} ↔ 𝑥𝐴))
14 dfcleq 2729 . . . 4 ( {𝑦𝐵𝜑} = 𝐴 ↔ ∀𝑥(𝑥 {𝑦𝐵𝜑} ↔ 𝑥𝐴))
1513, 14sylibr 234 . . 3 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → {𝑦𝐵𝜑} = 𝐴)
16 nfrab1 3456 . . . . . . 7 𝑦{𝑦𝐵𝜑}
1716nfeq2 2922 . . . . . 6 𝑦 𝑧 = {𝑦𝐵𝜑}
18 eleq2 2829 . . . . . . 7 (𝑧 = {𝑦𝐵𝜑} → (𝑦𝑧𝑦 ∈ {𝑦𝐵𝜑}))
19 rabid 3457 . . . . . . . 8 (𝑦 ∈ {𝑦𝐵𝜑} ↔ (𝑦𝐵𝜑))
2019simprbi 496 . . . . . . 7 (𝑦 ∈ {𝑦𝐵𝜑} → 𝜑)
2118, 20biimtrdi 253 . . . . . 6 (𝑧 = {𝑦𝐵𝜑} → (𝑦𝑧𝜑))
2217, 21ralrimi 3256 . . . . 5 (𝑧 = {𝑦𝐵𝜑} → ∀𝑦𝑧 𝜑)
23 unieq 4917 . . . . . . 7 (𝑧 = {𝑦𝐵𝜑} → 𝑧 = {𝑦𝐵𝜑})
2423eqeq1d 2738 . . . . . 6 (𝑧 = {𝑦𝐵𝜑} → ( 𝑧 = 𝐴 {𝑦𝐵𝜑} = 𝐴))
2524anbi1d 631 . . . . 5 (𝑧 = {𝑦𝐵𝜑} → (( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑) ↔ ( {𝑦𝐵𝜑} = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
2622, 25mpbiran2d 708 . . . 4 (𝑧 = {𝑦𝐵𝜑} → (( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑) ↔ {𝑦𝐵𝜑} = 𝐴))
2726rspcev 3621 . . 3 (({𝑦𝐵𝜑} ∈ 𝒫 𝐵 {𝑦𝐵𝜑} = 𝐴) → ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
283, 15, 27sylancr 587 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
29 elpwi 4606 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝐵𝑧𝐵)
30 r19.29r 3115 . . . . . . . . . . 11 ((∃𝑦𝑧 𝑥𝑦 ∧ ∀𝑦𝑧 𝜑) → ∃𝑦𝑧 (𝑥𝑦𝜑))
3130expcom 413 . . . . . . . . . 10 (∀𝑦𝑧 𝜑 → (∃𝑦𝑧 𝑥𝑦 → ∃𝑦𝑧 (𝑥𝑦𝜑)))
32 ssrexv 4052 . . . . . . . . . 10 (𝑧𝐵 → (∃𝑦𝑧 (𝑥𝑦𝜑) → ∃𝑦𝐵 (𝑥𝑦𝜑)))
3331, 32sylan9r 508 . . . . . . . . 9 ((𝑧𝐵 ∧ ∀𝑦𝑧 𝜑) → (∃𝑦𝑧 𝑥𝑦 → ∃𝑦𝐵 (𝑥𝑦𝜑)))
3429, 33sylan 580 . . . . . . . 8 ((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) → (∃𝑦𝑧 𝑥𝑦 → ∃𝑦𝐵 (𝑥𝑦𝜑)))
35 eleq2 2829 . . . . . . . . . 10 ( 𝑧 = 𝐴 → (𝑥 𝑧𝑥𝐴))
3635biimpar 477 . . . . . . . . 9 (( 𝑧 = 𝐴𝑥𝐴) → 𝑥 𝑧)
37 eluni2 4910 . . . . . . . . 9 (𝑥 𝑧 ↔ ∃𝑦𝑧 𝑥𝑦)
3836, 37sylib 218 . . . . . . . 8 (( 𝑧 = 𝐴𝑥𝐴) → ∃𝑦𝑧 𝑥𝑦)
3934, 38impel 505 . . . . . . 7 (((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) ∧ ( 𝑧 = 𝐴𝑥𝐴)) → ∃𝑦𝐵 (𝑥𝑦𝜑))
4039anassrs 467 . . . . . 6 ((((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) ∧ 𝑧 = 𝐴) ∧ 𝑥𝐴) → ∃𝑦𝐵 (𝑥𝑦𝜑))
4140ralrimiva 3145 . . . . 5 (((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) ∧ 𝑧 = 𝐴) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4241anasss 466 . . . 4 ((𝑧 ∈ 𝒫 𝐵 ∧ (∀𝑦𝑧 𝜑 𝑧 = 𝐴)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4342ancom2s 650 . . 3 ((𝑧 ∈ 𝒫 𝐵 ∧ ( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4443rexlimiva 3146 . 2 (∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4528, 44impbii 209 1 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  wss 3950  𝒫 cpw 4599   cuni 4906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-in 3957  df-ss 3967  df-pw 4601  df-uni 4907
This theorem is referenced by:  cover2g  37724
  Copyright terms: Public domain W3C validator