Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cover2 Structured version   Visualization version   GIF version

Theorem cover2 35609
Description: Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
cover2.1 𝐵 ∈ V
cover2.2 𝐴 = 𝐵
Assertion
Ref Expression
cover2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
Distinct variable groups:   𝜑,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐴,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem cover2
StepHypRef Expression
1 cover2.1 . . . 4 𝐵 ∈ V
2 ssrab2 3993 . . . 4 {𝑦𝐵𝜑} ⊆ 𝐵
31, 2elpwi2 5239 . . 3 {𝑦𝐵𝜑} ∈ 𝒫 𝐵
4 nfra1 3140 . . . . 5 𝑥𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑)
52unissi 4828 . . . . . . . 8 {𝑦𝐵𝜑} ⊆ 𝐵
65sseli 3896 . . . . . . 7 (𝑥 {𝑦𝐵𝜑} → 𝑥 𝐵)
7 cover2.2 . . . . . . 7 𝐴 = 𝐵
86, 7eleqtrrdi 2849 . . . . . 6 (𝑥 {𝑦𝐵𝜑} → 𝑥𝐴)
9 rsp 3127 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → (𝑥𝐴 → ∃𝑦𝐵 (𝑥𝑦𝜑)))
10 elunirab 4835 . . . . . . 7 (𝑥 {𝑦𝐵𝜑} ↔ ∃𝑦𝐵 (𝑥𝑦𝜑))
119, 10syl6ibr 255 . . . . . 6 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → (𝑥𝐴𝑥 {𝑦𝐵𝜑}))
128, 11impbid2 229 . . . . 5 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → (𝑥 {𝑦𝐵𝜑} ↔ 𝑥𝐴))
134, 12alrimi 2211 . . . 4 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → ∀𝑥(𝑥 {𝑦𝐵𝜑} ↔ 𝑥𝐴))
14 dfcleq 2730 . . . 4 ( {𝑦𝐵𝜑} = 𝐴 ↔ ∀𝑥(𝑥 {𝑦𝐵𝜑} ↔ 𝑥𝐴))
1513, 14sylibr 237 . . 3 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → {𝑦𝐵𝜑} = 𝐴)
16 nfrab1 3296 . . . . . . 7 𝑦{𝑦𝐵𝜑}
1716nfeq2 2921 . . . . . 6 𝑦 𝑧 = {𝑦𝐵𝜑}
18 eleq2 2826 . . . . . . 7 (𝑧 = {𝑦𝐵𝜑} → (𝑦𝑧𝑦 ∈ {𝑦𝐵𝜑}))
19 rabid 3290 . . . . . . . 8 (𝑦 ∈ {𝑦𝐵𝜑} ↔ (𝑦𝐵𝜑))
2019simprbi 500 . . . . . . 7 (𝑦 ∈ {𝑦𝐵𝜑} → 𝜑)
2118, 20syl6bi 256 . . . . . 6 (𝑧 = {𝑦𝐵𝜑} → (𝑦𝑧𝜑))
2217, 21ralrimi 3137 . . . . 5 (𝑧 = {𝑦𝐵𝜑} → ∀𝑦𝑧 𝜑)
23 unieq 4830 . . . . . . 7 (𝑧 = {𝑦𝐵𝜑} → 𝑧 = {𝑦𝐵𝜑})
2423eqeq1d 2739 . . . . . 6 (𝑧 = {𝑦𝐵𝜑} → ( 𝑧 = 𝐴 {𝑦𝐵𝜑} = 𝐴))
2524anbi1d 633 . . . . 5 (𝑧 = {𝑦𝐵𝜑} → (( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑) ↔ ( {𝑦𝐵𝜑} = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
2622, 25mpbiran2d 708 . . . 4 (𝑧 = {𝑦𝐵𝜑} → (( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑) ↔ {𝑦𝐵𝜑} = 𝐴))
2726rspcev 3537 . . 3 (({𝑦𝐵𝜑} ∈ 𝒫 𝐵 {𝑦𝐵𝜑} = 𝐴) → ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
283, 15, 27sylancr 590 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) → ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
29 elpwi 4522 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝐵𝑧𝐵)
30 r19.29r 3177 . . . . . . . . . . 11 ((∃𝑦𝑧 𝑥𝑦 ∧ ∀𝑦𝑧 𝜑) → ∃𝑦𝑧 (𝑥𝑦𝜑))
3130expcom 417 . . . . . . . . . 10 (∀𝑦𝑧 𝜑 → (∃𝑦𝑧 𝑥𝑦 → ∃𝑦𝑧 (𝑥𝑦𝜑)))
32 ssrexv 3968 . . . . . . . . . 10 (𝑧𝐵 → (∃𝑦𝑧 (𝑥𝑦𝜑) → ∃𝑦𝐵 (𝑥𝑦𝜑)))
3331, 32sylan9r 512 . . . . . . . . 9 ((𝑧𝐵 ∧ ∀𝑦𝑧 𝜑) → (∃𝑦𝑧 𝑥𝑦 → ∃𝑦𝐵 (𝑥𝑦𝜑)))
3429, 33sylan 583 . . . . . . . 8 ((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) → (∃𝑦𝑧 𝑥𝑦 → ∃𝑦𝐵 (𝑥𝑦𝜑)))
35 eleq2 2826 . . . . . . . . . 10 ( 𝑧 = 𝐴 → (𝑥 𝑧𝑥𝐴))
3635biimpar 481 . . . . . . . . 9 (( 𝑧 = 𝐴𝑥𝐴) → 𝑥 𝑧)
37 eluni2 4823 . . . . . . . . 9 (𝑥 𝑧 ↔ ∃𝑦𝑧 𝑥𝑦)
3836, 37sylib 221 . . . . . . . 8 (( 𝑧 = 𝐴𝑥𝐴) → ∃𝑦𝑧 𝑥𝑦)
3934, 38impel 509 . . . . . . 7 (((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) ∧ ( 𝑧 = 𝐴𝑥𝐴)) → ∃𝑦𝐵 (𝑥𝑦𝜑))
4039anassrs 471 . . . . . 6 ((((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) ∧ 𝑧 = 𝐴) ∧ 𝑥𝐴) → ∃𝑦𝐵 (𝑥𝑦𝜑))
4140ralrimiva 3105 . . . . 5 (((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦𝑧 𝜑) ∧ 𝑧 = 𝐴) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4241anasss 470 . . . 4 ((𝑧 ∈ 𝒫 𝐵 ∧ (∀𝑦𝑧 𝜑 𝑧 = 𝐴)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4342ancom2s 650 . . 3 ((𝑧 ∈ 𝒫 𝐵 ∧ ( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4443rexlimiva 3200 . 2 (∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑))
4528, 44impbii 212 1 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wcel 2110  wral 3061  wrex 3062  {crab 3065  Vcvv 3408  wss 3866  𝒫 cpw 4513   cuni 4819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-pw 4515  df-uni 4820
This theorem is referenced by:  cover2g  35610
  Copyright terms: Public domain W3C validator