MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelidres Structured version   Visualization version   GIF version

Theorem opelidres 6012
Description: 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelidres (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))

Proof of Theorem opelidres
StepHypRef Expression
1 ididg 5867 . . 3 (𝐴𝑉𝐴 I 𝐴)
2 df-br 5149 . . 3 (𝐴 I 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ I )
31, 2sylib 218 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ ∈ I )
4 opelres 6006 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ (𝐴𝐵 ∧ ⟨𝐴, 𝐴⟩ ∈ I )))
53, 4mpbiran2d 708 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  cop 4637   class class class wbr 5148   I cid 5582  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-res 5701
This theorem is referenced by:  dfpo2  6318  ustfilxp  24237  ustelimasn  24247  metustfbas  24586
  Copyright terms: Public domain W3C validator