Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelidres | Structured version Visualization version GIF version |
Description: 〈𝐴, 𝐴〉 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
Ref | Expression |
---|---|
opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg 5751 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
2 | df-br 5071 | . . 3 ⊢ (𝐴 I 𝐴 ↔ 〈𝐴, 𝐴〉 ∈ I ) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 ∈ I ) |
4 | opelres 5886 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ (𝐴 ∈ 𝐵 ∧ 〈𝐴, 𝐴〉 ∈ I ))) | |
5 | 3, 4 | mpbiran2d 704 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 I cid 5479 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: dfpo2 6188 ustfilxp 23272 ustelimasn 23282 metustfbas 23619 |
Copyright terms: Public domain | W3C validator |