MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelidres Structured version   Visualization version   GIF version

Theorem opelidres 5892
Description: 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelidres (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))

Proof of Theorem opelidres
StepHypRef Expression
1 ididg 5751 . . 3 (𝐴𝑉𝐴 I 𝐴)
2 df-br 5071 . . 3 (𝐴 I 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ I )
31, 2sylib 217 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ ∈ I )
4 opelres 5886 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ (𝐴𝐵 ∧ ⟨𝐴, 𝐴⟩ ∈ I )))
53, 4mpbiran2d 704 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  cop 4564   class class class wbr 5070   I cid 5479  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-res 5592
This theorem is referenced by:  dfpo2  6188  ustfilxp  23272  ustelimasn  23282  metustfbas  23619
  Copyright terms: Public domain W3C validator