![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelidres | Structured version Visualization version GIF version |
Description: ⟨𝐴, 𝐴⟩ belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
Ref | Expression |
---|---|
opelidres | ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg 5843 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
2 | df-br 5139 | . . 3 ⊢ (𝐴 I 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ I ) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⟨𝐴, 𝐴⟩ ∈ I ) |
4 | opelres 5977 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ (𝐴 ∈ 𝐵 ∧ ⟨𝐴, 𝐴⟩ ∈ I ))) | |
5 | 3, 4 | mpbiran2d 705 | 1 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 ⟨cop 4626 class class class wbr 5138 I cid 5563 ↾ cres 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-res 5678 |
This theorem is referenced by: dfpo2 6285 ustfilxp 24038 ustelimasn 24048 metustfbas 24387 |
Copyright terms: Public domain | W3C validator |