![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelidres | Structured version Visualization version GIF version |
Description: 〈𝐴, 𝐴〉 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
Ref | Expression |
---|---|
opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg 5867 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
2 | df-br 5149 | . . 3 ⊢ (𝐴 I 𝐴 ↔ 〈𝐴, 𝐴〉 ∈ I ) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 ∈ I ) |
4 | opelres 6006 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ (𝐴 ∈ 𝐵 ∧ 〈𝐴, 𝐴〉 ∈ I ))) | |
5 | 3, 4 | mpbiran2d 708 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 I cid 5582 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-res 5701 |
This theorem is referenced by: dfpo2 6318 ustfilxp 24237 ustelimasn 24247 metustfbas 24586 |
Copyright terms: Public domain | W3C validator |