| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelidres | Structured version Visualization version GIF version | ||
| Description: 〈𝐴, 𝐴〉 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
| Ref | Expression |
|---|---|
| opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ididg 5846 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 2 | df-br 5126 | . . 3 ⊢ (𝐴 I 𝐴 ↔ 〈𝐴, 𝐴〉 ∈ I ) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 ∈ I ) |
| 4 | opelres 5985 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ (𝐴 ∈ 𝐵 ∧ 〈𝐴, 𝐴〉 ∈ I ))) | |
| 5 | 3, 4 | mpbiran2d 708 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 〈cop 4614 class class class wbr 5125 I cid 5559 ↾ cres 5669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-res 5679 |
| This theorem is referenced by: dfpo2 6298 ustfilxp 24186 ustelimasn 24196 metustfbas 24533 |
| Copyright terms: Public domain | W3C validator |