MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelidres Structured version   Visualization version   GIF version

Theorem opelidres 6021
Description: 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelidres (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))

Proof of Theorem opelidres
StepHypRef Expression
1 ididg 5878 . . 3 (𝐴𝑉𝐴 I 𝐴)
2 df-br 5167 . . 3 (𝐴 I 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ I )
31, 2sylib 218 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ ∈ I )
4 opelres 6015 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ (𝐴𝐵 ∧ ⟨𝐴, 𝐴⟩ ∈ I )))
53, 4mpbiran2d 707 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  cop 4654   class class class wbr 5166   I cid 5592  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-res 5712
This theorem is referenced by:  dfpo2  6327  ustfilxp  24242  ustelimasn  24252  metustfbas  24591
  Copyright terms: Public domain W3C validator