MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelidres Structured version   Visualization version   GIF version

Theorem opelidres 5962
Description: 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelidres (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))

Proof of Theorem opelidres
StepHypRef Expression
1 ididg 5817 . . 3 (𝐴𝑉𝐴 I 𝐴)
2 df-br 5108 . . 3 (𝐴 I 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ I )
31, 2sylib 218 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ ∈ I )
4 opelres 5956 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ (𝐴𝐵 ∧ ⟨𝐴, 𝐴⟩ ∈ I )))
53, 4mpbiran2d 708 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  cop 4595   class class class wbr 5107   I cid 5532  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-res 5650
This theorem is referenced by:  dfpo2  6269  ustfilxp  24100  ustelimasn  24110  metustfbas  24445
  Copyright terms: Public domain W3C validator