| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelidres | Structured version Visualization version GIF version | ||
| Description: 〈𝐴, 𝐴〉 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
| Ref | Expression |
|---|---|
| opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ididg 5807 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 2 | df-br 5103 | . . 3 ⊢ (𝐴 I 𝐴 ↔ 〈𝐴, 𝐴〉 ∈ I ) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 ∈ I ) |
| 4 | opelres 5945 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ (𝐴 ∈ 𝐵 ∧ 〈𝐴, 𝐴〉 ∈ I ))) | |
| 5 | 3, 4 | mpbiran2d 708 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 I cid 5525 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: dfpo2 6257 ustfilxp 24133 ustelimasn 24143 metustfbas 24478 |
| Copyright terms: Public domain | W3C validator |