| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelidres | Structured version Visualization version GIF version | ||
| Description: 〈𝐴, 𝐴〉 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
| Ref | Expression |
|---|---|
| opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ididg 5791 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | |
| 2 | df-br 5090 | . . 3 ⊢ (𝐴 I 𝐴 ↔ 〈𝐴, 𝐴〉 ∈ I ) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 ∈ I ) |
| 4 | opelres 5931 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ (𝐴 ∈ 𝐵 ∧ 〈𝐴, 𝐴〉 ∈ I ))) | |
| 5 | 3, 4 | mpbiran2d 708 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 I cid 5508 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-res 5626 |
| This theorem is referenced by: dfpo2 6239 ustfilxp 24121 ustelimasn 24131 metustfbas 24465 |
| Copyright terms: Public domain | W3C validator |