MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcdm Structured version   Visualization version   GIF version

Theorem cncfcdm 24943
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
cncfcdm ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))

Proof of Theorem cncfcdm
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfi 24939 . . . . 5 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
213expb 1120 . . . 4 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
32ralrimivva 3208 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
43adantl 481 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
5 cncfrss 24936 . . 3 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
6 simpl 482 . . 3 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
7 elcncf2 24935 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
85, 6, 7syl2an2 685 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
94, 8mpbiran2d 707 1 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182   < clt 11324  cmin 11520  +crp 13057  abscabs 15283  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150  df-abs 15285  df-cncf 24923
This theorem is referenced by:  cncfss  24944  cncfmpt2ss  24961  rolle  26048  dvlipcn  26053  c1lip2  26057  dvivthlem1  26067  dvivth  26069  lhop1lem  26072  dvcnvrelem2  26077  dvfsumlem2  26087  dvfsumlem2OLD  26088  itgsubstlem  26109  efcvx  26511  dvrelog  26697  relogcn  26698  logcn  26707  dvlog  26711  logccv  26723  resqrtcn  26810  loglesqrt  26822  lgamgulmlem2  27091  rpsqrtcn  34570  fdvneggt  34577  fdvnegge  34579  logdivsqrle  34627  knoppcn2  36502  areacirclem4  37671  cncfres  37725  intlewftc  42018  aks4d1p1p5  42032  cncfmptssg  45792  resincncf  45796  cncfcompt  45804  cncfiooiccre  45816  dvdivcncf  45848  dvbdfbdioolem1  45849  ioodvbdlimc1lem2  45853  ioodvbdlimc2lem  45855  itgsbtaddcnst  45903  fourierdlem58  46085  fourierdlem59  46086  fourierdlem62  46089  fourierdlem68  46095  fourierdlem76  46103  fourierdlem78  46105  fourierdlem83  46110  fourierdlem101  46128  fourierdlem112  46139  fouriercn  46153
  Copyright terms: Public domain W3C validator