![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfcdm | Structured version Visualization version GIF version |
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
cncfcdm | ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfi 24634 | . . . . 5 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) | |
2 | 1 | 3expb 1120 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
3 | 2 | ralrimivva 3200 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
4 | 3 | adantl 482 | . 2 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
5 | cncfrss 24631 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
6 | simpl 483 | . . 3 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐶 ⊆ ℂ) | |
7 | elcncf2 24630 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ (𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) | |
8 | 5, 6, 7 | syl2an2 684 | . 2 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ (𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) |
9 | 4, 8 | mpbiran2d 706 | 1 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 < clt 11252 − cmin 11448 ℝ+crp 12978 abscabs 15185 –cn→ccncf 24616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-2 12279 df-cj 15050 df-re 15051 df-im 15052 df-abs 15187 df-cncf 24618 |
This theorem is referenced by: cncfss 24639 cncfmpt2ss 24656 rolle 25731 dvlipcn 25735 c1lip2 25739 dvivthlem1 25749 dvivth 25751 lhop1lem 25754 dvcnvrelem2 25759 dvfsumlem2 25768 itgsubstlem 25789 efcvx 26185 dvrelog 26369 relogcn 26370 logcn 26379 dvlog 26383 logccv 26395 resqrtcn 26481 loglesqrt 26490 lgamgulmlem2 26758 rpsqrtcn 33891 fdvneggt 33898 fdvnegge 33900 logdivsqrle 33948 gg-dvfsumlem2 35469 knoppcn2 35715 areacirclem4 36882 cncfres 36936 intlewftc 41232 aks4d1p1p5 41246 cncfmptssg 44886 resincncf 44890 cncfcompt 44898 cncfiooiccre 44910 dvdivcncf 44942 dvbdfbdioolem1 44943 ioodvbdlimc1lem2 44947 ioodvbdlimc2lem 44949 itgsbtaddcnst 44997 fourierdlem58 45179 fourierdlem59 45180 fourierdlem62 45183 fourierdlem68 45189 fourierdlem76 45197 fourierdlem78 45199 fourierdlem83 45204 fourierdlem101 45222 fourierdlem112 45233 fouriercn 45247 |
Copyright terms: Public domain | W3C validator |