MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcdm Structured version   Visualization version   GIF version

Theorem cncfcdm 24414
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
cncfcdm ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))

Proof of Theorem cncfcdm
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfi 24410 . . . . 5 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
213expb 1121 . . . 4 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
32ralrimivva 3201 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
43adantl 483 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
5 cncfrss 24407 . . 3 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
6 simpl 484 . . 3 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
7 elcncf2 24406 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
85, 6, 7syl2an2 685 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
94, 8mpbiran2d 707 1 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wral 3062  wrex 3071  wss 3949   class class class wbr 5149  wf 6540  cfv 6544  (class class class)co 7409  cc 11108   < clt 11248  cmin 11444  +crp 12974  abscabs 15181  cnccncf 24392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-2 12275  df-cj 15046  df-re 15047  df-im 15048  df-abs 15183  df-cncf 24394
This theorem is referenced by:  cncfss  24415  cncfmpt2ss  24432  rolle  25507  dvlipcn  25511  c1lip2  25515  dvivthlem1  25525  dvivth  25527  lhop1lem  25530  dvcnvrelem2  25535  dvfsumlem2  25544  itgsubstlem  25565  efcvx  25961  dvrelog  26145  relogcn  26146  logcn  26155  dvlog  26159  logccv  26171  resqrtcn  26257  loglesqrt  26266  lgamgulmlem2  26534  rpsqrtcn  33636  fdvneggt  33643  fdvnegge  33645  logdivsqrle  33693  gg-dvfsumlem2  35214  knoppcn2  35460  areacirclem4  36627  cncfres  36681  intlewftc  40974  aks4d1p1p5  40988  cncfmptssg  44635  resincncf  44639  cncfcompt  44647  cncfiooiccre  44659  dvdivcncf  44691  dvbdfbdioolem1  44692  ioodvbdlimc1lem2  44696  ioodvbdlimc2lem  44698  itgsbtaddcnst  44746  fourierdlem58  44928  fourierdlem59  44929  fourierdlem62  44932  fourierdlem68  44938  fourierdlem76  44946  fourierdlem78  44948  fourierdlem83  44953  fourierdlem101  44971  fourierdlem112  44982  fouriercn  44996
  Copyright terms: Public domain W3C validator