MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcdm Structured version   Visualization version   GIF version

Theorem cncfcdm 24767
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
cncfcdm ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))

Proof of Theorem cncfcdm
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfi 24763 . . . . 5 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
213expb 1120 . . . 4 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
32ralrimivva 3178 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
43adantl 481 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
5 cncfrss 24760 . . 3 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
6 simpl 482 . . 3 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
7 elcncf2 24759 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
85, 6, 7syl2an2 686 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
94, 8mpbiran2d 708 1 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cc 11042   < clt 11184  cmin 11381  +crp 12927  abscabs 15176  cnccncf 24745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-cj 15041  df-re 15042  df-im 15043  df-abs 15178  df-cncf 24747
This theorem is referenced by:  cncfss  24768  cncfmpt2ss  24785  rolle  25870  dvlipcn  25875  c1lip2  25879  dvivthlem1  25889  dvivth  25891  lhop1lem  25894  dvcnvrelem2  25899  dvfsumlem2  25909  dvfsumlem2OLD  25910  itgsubstlem  25931  efcvx  26335  dvrelog  26522  relogcn  26523  logcn  26532  dvlog  26536  logccv  26548  resqrtcn  26635  loglesqrt  26647  lgamgulmlem2  26916  rpsqrtcn  34557  fdvneggt  34564  fdvnegge  34566  logdivsqrle  34614  knoppcn2  36497  areacirclem4  37678  cncfres  37732  intlewftc  42022  aks4d1p1p5  42036  cncfmptssg  45842  resincncf  45846  cncfcompt  45854  cncfiooiccre  45866  dvdivcncf  45898  dvbdfbdioolem1  45899  ioodvbdlimc1lem2  45903  ioodvbdlimc2lem  45905  itgsbtaddcnst  45953  fourierdlem58  46135  fourierdlem59  46136  fourierdlem62  46139  fourierdlem68  46145  fourierdlem76  46153  fourierdlem78  46155  fourierdlem83  46160  fourierdlem101  46178  fourierdlem112  46189  fouriercn  46203
  Copyright terms: Public domain W3C validator