MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcdm Structured version   Visualization version   GIF version

Theorem cncfcdm 24110
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
cncfcdm ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))

Proof of Theorem cncfcdm
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfi 24106 . . . . 5 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
213expb 1120 . . . 4 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
32ralrimivva 3194 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
43adantl 483 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
5 cncfrss 24103 . . 3 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
6 simpl 484 . . 3 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
7 elcncf2 24102 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
85, 6, 7syl2an2 684 . 2 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
94, 8mpbiran2d 706 1 ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  wral 3062  wrex 3071  wss 3892   class class class wbr 5081  wf 6454  cfv 6458  (class class class)co 7307  cc 10919   < clt 11059  cmin 11255  +crp 12780  abscabs 14994  cnccncf 24088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-2 12086  df-cj 14859  df-re 14860  df-im 14861  df-abs 14996  df-cncf 24090
This theorem is referenced by:  cncfss  24111  cncfmpt2ss  24128  rolle  25203  dvlipcn  25207  c1lip2  25211  dvivthlem1  25221  dvivth  25223  lhop1lem  25226  dvcnvrelem2  25231  dvfsumlem2  25240  itgsubstlem  25261  efcvx  25657  dvrelog  25841  relogcn  25842  logcn  25851  dvlog  25855  logccv  25867  resqrtcn  25951  loglesqrt  25960  lgamgulmlem2  26228  rpsqrtcn  32622  fdvneggt  32629  fdvnegge  32631  logdivsqrle  32679  knoppcn2  34765  areacirclem4  35916  cncfres  35971  intlewftc  40269  aks4d1p1p5  40283  cncfmptssg  43641  resincncf  43645  cncfcompt  43653  cncfiooiccre  43665  dvdivcncf  43697  dvbdfbdioolem1  43698  ioodvbdlimc1lem2  43702  ioodvbdlimc2lem  43704  itgsbtaddcnst  43752  fourierdlem58  43934  fourierdlem59  43935  fourierdlem62  43938  fourierdlem68  43944  fourierdlem76  43952  fourierdlem78  43954  fourierdlem83  43959  fourierdlem101  43977  fourierdlem112  43988  fouriercn  44002
  Copyright terms: Public domain W3C validator