MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpodifsnif Structured version   Visualization version   GIF version

Theorem mpodifsnif 7567
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
Assertion
Ref Expression
mpodifsnif (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)

Proof of Theorem mpodifsnif
StepHypRef Expression
1 eldifsnneq 4816 . . . 4 (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋)
21adantr 480 . . 3 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → ¬ 𝑖 = 𝑋)
32iffalsed 4559 . 2 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷)
43mpoeq3ia 7530 1 (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  cdif 3973  ifcif 4548  {csn 4648  cmpo 7452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-if 4549  df-sn 4649  df-oprab 7454  df-mpo 7455
This theorem is referenced by:  smadiadetglem1  22700
  Copyright terms: Public domain W3C validator