MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpodifsnif Structured version   Visualization version   GIF version

Theorem mpodifsnif 7515
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
Assertion
Ref Expression
mpodifsnif (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)

Proof of Theorem mpodifsnif
StepHypRef Expression
1 eldifsnneq 4786 . . . 4 (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋)
21adantr 480 . . 3 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → ¬ 𝑖 = 𝑋)
32iffalsed 4531 . 2 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷)
43mpoeq3ia 7479 1 (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1533  wcel 2098  cdif 3937  ifcif 4520  {csn 4620  cmpo 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-v 3468  df-dif 3943  df-if 4521  df-sn 4621  df-oprab 7405  df-mpo 7406
This theorem is referenced by:  smadiadetglem1  22495
  Copyright terms: Public domain W3C validator