MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpodifsnif Structured version   Visualization version   GIF version

Theorem mpodifsnif 7506
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
Assertion
Ref Expression
mpodifsnif (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)

Proof of Theorem mpodifsnif
StepHypRef Expression
1 eldifsnneq 4757 . . . 4 (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋)
21adantr 480 . . 3 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → ¬ 𝑖 = 𝑋)
32iffalsed 4501 . 2 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷)
43mpoeq3ia 7469 1 (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  cdif 3913  ifcif 4490  {csn 4591  cmpo 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3919  df-if 4491  df-sn 4592  df-oprab 7393  df-mpo 7394
This theorem is referenced by:  smadiadetglem1  22564
  Copyright terms: Public domain W3C validator