| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpodifsnif | Structured version Visualization version GIF version | ||
| Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.) |
| Ref | Expression |
|---|---|
| mpodifsnif | ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnneq 4771 | . . . 4 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → ¬ 𝑖 = 𝑋) |
| 3 | 2 | iffalsed 4516 | . 2 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷) |
| 4 | 3 | mpoeq3ia 7493 | 1 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 ifcif 4505 {csn 4606 ∈ cmpo 7415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-if 4506 df-sn 4607 df-oprab 7417 df-mpo 7418 |
| This theorem is referenced by: smadiadetglem1 22625 |
| Copyright terms: Public domain | W3C validator |