Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | 3adant1 1132 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7288 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
4 | 3 | mptru 1550 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ⊤wtru 1544 ∈ wcel 2110 ∈ cmpo 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-oprab 7217 df-mpo 7218 |
This theorem is referenced by: mpodifsnif 7325 mposnif 7326 oprab2co 7865 cnfcomlem 9314 cnfcom2 9317 dfioo2 13038 elovmpowrd 14113 sadcom 16022 comfffval2 17204 oppchomf 17224 symgga 18799 oppglsm 19031 dfrhm2 19737 cnfldsub 20391 cnflddiv 20393 mat0op 21316 mattpos1 21353 mdetunilem7 21515 madufval 21534 maducoeval2 21537 madugsum 21540 mp2pm2mplem5 21707 mp2pm2mp 21708 leordtval 22110 xpstopnlem1 22706 divcn 23765 oprpiece1res1 23848 oprpiece1res2 23849 ehl1eudis 24317 ehl2eudis 24319 cxpcn 25631 cnnvm 28763 mdetpmtr2 31488 madjusmdetlem1 31491 cnre2csqima 31575 mndpluscn 31590 raddcn 31593 icorempo 35259 matunitlindflem1 35510 mendplusgfval 40713 hoidmv1le 43807 hspdifhsp 43829 vonn0ioo 43900 vonn0icc 43901 dflinc2 45424 |
Copyright terms: Public domain | W3C validator |