![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7488 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
4 | 3 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: mpodifsnif 7525 mposnif 7526 oprab2co 8085 cnfcomlem 9696 cnfcom2 9699 dfioo2 13431 elovmpowrd 14512 sadcom 16408 comfffval2 17649 oppchomf 17670 symgga 19316 oppglsm 19551 dfrhm2 20365 cnfldsub 21173 cnflddiv 21175 mat0op 22141 mattpos1 22178 mdetunilem7 22340 madufval 22359 maducoeval2 22362 madugsum 22365 mp2pm2mplem5 22532 mp2pm2mp 22533 leordtval 22937 xpstopnlem1 23533 divcnOLD 24604 divcn 24606 oprpiece1res1 24691 oprpiece1res2 24692 ehl1eudis 25161 ehl2eudis 25163 cxpcn 26477 cnnvm 30190 mdetpmtr2 33090 madjusmdetlem1 33093 cnre2csqima 33177 mndpluscn 33192 raddcn 33195 gg-cxpcn 35470 icorempo 36535 matunitlindflem1 36787 mendplusgfval 42229 hoidmv1le 45609 hspdifhsp 45631 vonn0ioo 45702 vonn0icc 45703 dflinc2 47179 |
Copyright terms: Public domain | W3C validator |