| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7484 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: mpodifsnif 7522 mposnif 7523 oprab2co 8096 cnfcomlem 9713 cnfcom2 9716 dfioo2 13467 elovmpowrd 14576 sadcom 16482 comfffval2 17713 oppchomf 17732 symgga 19388 oppglsm 19623 dfrhm2 20434 cnfldsub 21360 cnflddiv 21363 cnflddivOLD 21364 mat0op 22357 mattpos1 22394 mdetunilem7 22556 madufval 22575 maducoeval2 22578 madugsum 22581 mp2pm2mplem5 22748 mp2pm2mp 22749 leordtval 23151 xpstopnlem1 23747 divcnOLD 24808 divcn 24810 oprpiece1res1 24900 oprpiece1res2 24901 ehl1eudis 25372 ehl2eudis 25374 cxpcn 26706 cxpcnOLD 26707 cnnvm 30663 mdetpmtr2 33855 madjusmdetlem1 33858 cnre2csqima 33942 mndpluscn 33957 raddcn 33960 icorempo 37369 matunitlindflem1 37640 mendplusgfval 43205 hoidmv1le 46623 hspdifhsp 46645 vonn0ioo 46716 vonn0icc 46717 dflinc2 48386 dfswapf2 49178 diag1a 49216 funcsetc1o 49382 |
| Copyright terms: Public domain | W3C validator |