| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7423 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| 4 | 3 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: mpodifsnif 7461 mposnif 7462 oprab2co 8027 cnfcomlem 9589 cnfcom2 9592 dfioo2 13350 elovmpowrd 14465 sadcom 16374 comfffval2 17607 oppchomf 17626 symgga 19319 oppglsm 19554 dfrhm2 20392 cnfldsub 21334 cnflddiv 21337 cnflddivOLD 21338 mat0op 22334 mattpos1 22371 mdetunilem7 22533 madufval 22552 maducoeval2 22555 madugsum 22558 mp2pm2mplem5 22725 mp2pm2mp 22726 leordtval 23128 xpstopnlem1 23724 divcnOLD 24784 divcn 24786 oprpiece1res1 24876 oprpiece1res2 24877 ehl1eudis 25347 ehl2eudis 25349 cxpcn 26681 cxpcnOLD 26682 cnnvm 30662 issply 33584 mdetpmtr2 33837 madjusmdetlem1 33840 cnre2csqima 33924 mndpluscn 33939 raddcn 33942 icorempo 37395 matunitlindflem1 37666 mendplusgfval 43284 hoidmv1le 46702 hspdifhsp 46724 vonn0ioo 46795 vonn0icc 46796 dflinc2 48521 cofuoppf 49261 dfswapf2 49372 diag1a 49416 funcsetc1o 49608 |
| Copyright terms: Public domain | W3C validator |