MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq3ia Structured version   Visualization version   GIF version

Theorem mpoeq3ia 7489
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpoeq3ia.1 ((𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mpoeq3ia (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)

Proof of Theorem mpoeq3ia
StepHypRef Expression
1 mpoeq3ia.1 . . . 4 ((𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)
213adant1 1130 . . 3 ((⊤ ∧ 𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)
32mpoeq3dva 7488 . 2 (⊤ → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))
43mptru 1548 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wtru 1542  wcel 2106  cmpo 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-oprab 7415  df-mpo 7416
This theorem is referenced by:  mpodifsnif  7525  mposnif  7526  oprab2co  8085  cnfcomlem  9696  cnfcom2  9699  dfioo2  13431  elovmpowrd  14512  sadcom  16408  comfffval2  17649  oppchomf  17670  symgga  19316  oppglsm  19551  dfrhm2  20365  cnfldsub  21173  cnflddiv  21175  mat0op  22141  mattpos1  22178  mdetunilem7  22340  madufval  22359  maducoeval2  22362  madugsum  22365  mp2pm2mplem5  22532  mp2pm2mp  22533  leordtval  22937  xpstopnlem1  23533  divcnOLD  24604  divcn  24606  oprpiece1res1  24691  oprpiece1res2  24692  ehl1eudis  25161  ehl2eudis  25163  cxpcn  26477  cnnvm  30190  mdetpmtr2  33090  madjusmdetlem1  33093  cnre2csqima  33177  mndpluscn  33192  raddcn  33195  gg-cxpcn  35470  icorempo  36535  matunitlindflem1  36787  mendplusgfval  42229  hoidmv1le  45609  hspdifhsp  45631  vonn0ioo  45702  vonn0icc  45703  dflinc2  47179
  Copyright terms: Public domain W3C validator