![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | 3adant1 1123 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7089 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
4 | 3 | mptru 1529 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ⊤wtru 1523 ∈ wcel 2081 ∈ cmpo 7018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-9 2091 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-oprab 7020 df-mpo 7021 |
This theorem is referenced by: mpodifsnif 7123 mposnif 7124 oprab2co 7648 cnfcomlem 9008 cnfcom2 9011 dfioo2 12688 elovmpowrd 13756 sadcom 15645 comfffval2 16800 oppchomf 16819 symgga 18265 oppglsm 18497 dfrhm2 19159 cnfldsub 20255 cnflddiv 20257 mat0op 20712 mattpos1 20749 mdetunilem7 20911 madufval 20930 maducoeval2 20933 madugsum 20936 mp2pm2mplem5 21102 mp2pm2mp 21103 leordtval 21505 xpstopnlem1 22101 divcn 23159 oprpiece1res1 23238 oprpiece1res2 23239 ehl1eudis 23706 ehl2eudis 23708 cxpcn 25007 cnnvm 28150 mdetpmtr2 30704 madjusmdetlem1 30707 cnre2csqima 30771 mndpluscn 30786 raddcn 30789 icorempo 34163 matunitlindflem1 34419 mendplusgfval 39270 hoidmv1le 42418 hspdifhsp 42440 vonn0ioo 42511 vonn0icc 42512 dflinc2 43945 |
Copyright terms: Public domain | W3C validator |