Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7330 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
4 | 3 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: mpodifsnif 7367 mposnif 7368 oprab2co 7908 cnfcomlem 9387 cnfcom2 9390 dfioo2 13111 elovmpowrd 14189 sadcom 16098 comfffval2 17327 oppchomf 17348 symgga 18930 oppglsm 19162 dfrhm2 19876 cnfldsub 20538 cnflddiv 20540 mat0op 21476 mattpos1 21513 mdetunilem7 21675 madufval 21694 maducoeval2 21697 madugsum 21700 mp2pm2mplem5 21867 mp2pm2mp 21868 leordtval 22272 xpstopnlem1 22868 divcn 23937 oprpiece1res1 24020 oprpiece1res2 24021 ehl1eudis 24489 ehl2eudis 24491 cxpcn 25803 cnnvm 28945 mdetpmtr2 31676 madjusmdetlem1 31679 cnre2csqima 31763 mndpluscn 31778 raddcn 31781 icorempo 35449 matunitlindflem1 35700 mendplusgfval 40926 hoidmv1le 44022 hspdifhsp 44044 vonn0ioo 44115 vonn0icc 44116 dflinc2 45639 |
Copyright terms: Public domain | W3C validator |