| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7446 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: mpodifsnif 7484 mposnif 7485 oprab2co 8053 cnfcomlem 9628 cnfcom2 9631 dfioo2 13387 elovmpowrd 14499 sadcom 16409 comfffval2 17642 oppchomf 17661 symgga 19321 oppglsm 19556 dfrhm2 20394 cnfldsub 21339 cnflddiv 21342 cnflddivOLD 21343 mat0op 22339 mattpos1 22376 mdetunilem7 22538 madufval 22557 maducoeval2 22560 madugsum 22563 mp2pm2mplem5 22730 mp2pm2mp 22731 leordtval 23133 xpstopnlem1 23729 divcnOLD 24790 divcn 24792 oprpiece1res1 24882 oprpiece1res2 24883 ehl1eudis 25353 ehl2eudis 25355 cxpcn 26687 cxpcnOLD 26688 cnnvm 30661 mdetpmtr2 33807 madjusmdetlem1 33810 cnre2csqima 33894 mndpluscn 33909 raddcn 33912 icorempo 37332 matunitlindflem1 37603 mendplusgfval 43163 hoidmv1le 46585 hspdifhsp 46607 vonn0ioo 46678 vonn0icc 46679 dflinc2 48392 cofuoppf 49132 dfswapf2 49243 diag1a 49287 funcsetc1o 49479 |
| Copyright terms: Public domain | W3C validator |