| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7426 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: mpodifsnif 7464 mposnif 7465 oprab2co 8030 cnfcomlem 9595 cnfcom2 9598 dfioo2 13353 elovmpowrd 14465 sadcom 16374 comfffval2 17607 oppchomf 17626 symgga 19286 oppglsm 19521 dfrhm2 20359 cnfldsub 21304 cnflddiv 21307 cnflddivOLD 21308 mat0op 22304 mattpos1 22341 mdetunilem7 22503 madufval 22522 maducoeval2 22525 madugsum 22528 mp2pm2mplem5 22695 mp2pm2mp 22696 leordtval 23098 xpstopnlem1 23694 divcnOLD 24755 divcn 24757 oprpiece1res1 24847 oprpiece1res2 24848 ehl1eudis 25318 ehl2eudis 25320 cxpcn 26652 cxpcnOLD 26653 cnnvm 30626 mdetpmtr2 33797 madjusmdetlem1 33800 cnre2csqima 33884 mndpluscn 33899 raddcn 33902 icorempo 37335 matunitlindflem1 37606 mendplusgfval 43164 hoidmv1le 46585 hspdifhsp 46607 vonn0ioo 46678 vonn0icc 46679 dflinc2 48405 cofuoppf 49145 dfswapf2 49256 diag1a 49300 funcsetc1o 49492 |
| Copyright terms: Public domain | W3C validator |