| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7466 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: mpodifsnif 7504 mposnif 7505 oprab2co 8076 cnfcomlem 9652 cnfcom2 9655 dfioo2 13411 elovmpowrd 14523 sadcom 16433 comfffval2 17662 oppchomf 17681 symgga 19337 oppglsm 19572 dfrhm2 20383 cnfldsub 21309 cnflddiv 21312 cnflddivOLD 21313 mat0op 22306 mattpos1 22343 mdetunilem7 22505 madufval 22524 maducoeval2 22527 madugsum 22530 mp2pm2mplem5 22697 mp2pm2mp 22698 leordtval 23100 xpstopnlem1 23696 divcnOLD 24757 divcn 24759 oprpiece1res1 24849 oprpiece1res2 24850 ehl1eudis 25320 ehl2eudis 25322 cxpcn 26654 cxpcnOLD 26655 cnnvm 30611 mdetpmtr2 33814 madjusmdetlem1 33817 cnre2csqima 33901 mndpluscn 33916 raddcn 33919 icorempo 37339 matunitlindflem1 37610 mendplusgfval 43170 hoidmv1le 46592 hspdifhsp 46614 vonn0ioo 46685 vonn0icc 46686 dflinc2 48399 cofuoppf 49139 dfswapf2 49250 diag1a 49294 funcsetc1o 49486 |
| Copyright terms: Public domain | W3C validator |