Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | 3adant1 1129 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7352 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
4 | 3 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: mpodifsnif 7389 mposnif 7390 oprab2co 7937 cnfcomlem 9457 cnfcom2 9460 dfioo2 13182 elovmpowrd 14261 sadcom 16170 comfffval2 17410 oppchomf 17431 symgga 19015 oppglsm 19247 dfrhm2 19961 cnfldsub 20626 cnflddiv 20628 mat0op 21568 mattpos1 21605 mdetunilem7 21767 madufval 21786 maducoeval2 21789 madugsum 21792 mp2pm2mplem5 21959 mp2pm2mp 21960 leordtval 22364 xpstopnlem1 22960 divcn 24031 oprpiece1res1 24114 oprpiece1res2 24115 ehl1eudis 24584 ehl2eudis 24586 cxpcn 25898 cnnvm 29044 mdetpmtr2 31774 madjusmdetlem1 31777 cnre2csqima 31861 mndpluscn 31876 raddcn 31879 icorempo 35522 matunitlindflem1 35773 mendplusgfval 41010 hoidmv1le 44132 hspdifhsp 44154 vonn0ioo 44225 vonn0icc 44226 dflinc2 45751 |
Copyright terms: Public domain | W3C validator |