![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7527 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
4 | 3 | mptru 1544 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: mpodifsnif 7565 mposnif 7566 oprab2co 8138 cnfcomlem 9768 cnfcom2 9771 dfioo2 13510 elovmpowrd 14606 sadcom 16509 comfffval2 17759 oppchomf 17780 symgga 19449 oppglsm 19684 dfrhm2 20500 cnfldsub 21433 cnflddiv 21436 cnflddivOLD 21437 mat0op 22446 mattpos1 22483 mdetunilem7 22645 madufval 22664 maducoeval2 22667 madugsum 22670 mp2pm2mplem5 22837 mp2pm2mp 22838 leordtval 23242 xpstopnlem1 23838 divcnOLD 24909 divcn 24911 oprpiece1res1 25001 oprpiece1res2 25002 ehl1eudis 25473 ehl2eudis 25475 cxpcn 26805 cxpcnOLD 26806 cnnvm 30714 mdetpmtr2 33770 madjusmdetlem1 33773 cnre2csqima 33857 mndpluscn 33872 raddcn 33875 icorempo 37317 matunitlindflem1 37576 mendplusgfval 43142 hoidmv1le 46515 hspdifhsp 46537 vonn0ioo 46608 vonn0icc 46609 dflinc2 48139 |
Copyright terms: Public domain | W3C validator |