| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3ia | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3ia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3ia | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3ia.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7469 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| 4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: mpodifsnif 7507 mposnif 7508 oprab2co 8079 cnfcomlem 9659 cnfcom2 9662 dfioo2 13418 elovmpowrd 14530 sadcom 16440 comfffval2 17669 oppchomf 17688 symgga 19344 oppglsm 19579 dfrhm2 20390 cnfldsub 21316 cnflddiv 21319 cnflddivOLD 21320 mat0op 22313 mattpos1 22350 mdetunilem7 22512 madufval 22531 maducoeval2 22534 madugsum 22537 mp2pm2mplem5 22704 mp2pm2mp 22705 leordtval 23107 xpstopnlem1 23703 divcnOLD 24764 divcn 24766 oprpiece1res1 24856 oprpiece1res2 24857 ehl1eudis 25327 ehl2eudis 25329 cxpcn 26661 cxpcnOLD 26662 cnnvm 30618 mdetpmtr2 33821 madjusmdetlem1 33824 cnre2csqima 33908 mndpluscn 33923 raddcn 33926 icorempo 37346 matunitlindflem1 37617 mendplusgfval 43177 hoidmv1le 46599 hspdifhsp 46621 vonn0ioo 46692 vonn0icc 46693 dflinc2 48403 cofuoppf 49143 dfswapf2 49254 diag1a 49298 funcsetc1o 49490 |
| Copyright terms: Public domain | W3C validator |