MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq3ia Structured version   Visualization version   GIF version

Theorem mpoeq3ia 7511
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpoeq3ia.1 ((𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
mpoeq3ia (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)

Proof of Theorem mpoeq3ia
StepHypRef Expression
1 mpoeq3ia.1 . . . 4 ((𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)
213adant1 1129 . . 3 ((⊤ ∧ 𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)
32mpoeq3dva 7510 . 2 (⊤ → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))
43mptru 1544 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wtru 1538  wcel 2106  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  mpodifsnif  7548  mposnif  7549  oprab2co  8121  cnfcomlem  9737  cnfcom2  9740  dfioo2  13487  elovmpowrd  14593  sadcom  16497  comfffval2  17746  oppchomf  17767  symgga  19440  oppglsm  19675  dfrhm2  20491  cnfldsub  21428  cnflddiv  21431  cnflddivOLD  21432  mat0op  22441  mattpos1  22478  mdetunilem7  22640  madufval  22659  maducoeval2  22662  madugsum  22665  mp2pm2mplem5  22832  mp2pm2mp  22833  leordtval  23237  xpstopnlem1  23833  divcnOLD  24904  divcn  24906  oprpiece1res1  24996  oprpiece1res2  24997  ehl1eudis  25468  ehl2eudis  25470  cxpcn  26802  cxpcnOLD  26803  cnnvm  30711  mdetpmtr2  33785  madjusmdetlem1  33788  cnre2csqima  33872  mndpluscn  33887  raddcn  33890  icorempo  37334  matunitlindflem1  37603  mendplusgfval  43170  hoidmv1le  46550  hspdifhsp  46572  vonn0ioo  46643  vonn0icc  46644  dflinc2  48256
  Copyright terms: Public domain W3C validator