| Step | Hyp | Ref
| Expression |
| 1 | | mpodifsnif 7548 |
. . . . 5
⊢ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗)) |
| 2 | | mpodifsnif 7548 |
. . . . 5
⊢ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗)) |
| 3 | 1, 2 | eqtr4i 2768 |
. . . 4
⊢ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) |
| 4 | | difss 4136 |
. . . . . 6
⊢ (𝑁 ∖ {𝐾}) ⊆ 𝑁 |
| 5 | | ssid 4006 |
. . . . . 6
⊢ 𝑁 ⊆ 𝑁 |
| 6 | 4, 5 | pm3.2i 470 |
. . . . 5
⊢ ((𝑁 ∖ {𝐾}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) |
| 7 | | resmpo 7553 |
. . . . 5
⊢ (((𝑁 ∖ {𝐾}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 8 | 6, 7 | mp1i 13 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 9 | | resmpo 7553 |
. . . . 5
⊢ (((𝑁 ∖ {𝐾}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 10 | 6, 9 | mp1i 13 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 11 | 3, 8, 10 | 3eqtr4a 2803 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) |
| 12 | | simp1 1137 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑀 ∈ 𝐵) |
| 13 | | simp3 1139 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅)) |
| 14 | | simp2 1138 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝐾 ∈ 𝑁) |
| 15 | | smadiadet.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 16 | | smadiadet.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 17 | | eqid 2737 |
. . . . . 6
⊢ (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅) |
| 18 | | eqid 2737 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 19 | 15, 16, 17, 18 | marrepval 22568 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 20 | 12, 13, 14, 14, 19 | syl22anc 839 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 21 | 20 | reseq1d 5996 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) |
| 22 | | smadiadet.r |
. . . . . 6
⊢ 𝑅 ∈ CRing |
| 23 | | crngring 20242 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 24 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 25 | | eqid 2737 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 26 | 24, 25 | ringidcl 20262 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 27 | 23, 26 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ CRing →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 28 | 22, 27 | mp1i 13 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 29 | 15, 16, 17, 18 | marrepval 22568 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 30 | 12, 28, 14, 14, 29 | syl22anc 839 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 31 | 30 | reseq1d 5996 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) |
| 32 | 11, 21, 31 | 3eqtr4d 2787 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) |
| 33 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢ 𝑅 ∈ Ring |
| 34 | 15, 16, 25 | minmar1marrep 22656 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))) |
| 35 | 33, 12, 34 | sylancr 587 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))) |
| 36 | 35 | eqcomd 2743 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑀(𝑁 matRRep 𝑅)(1r‘𝑅)) = ((𝑁 minMatR1 𝑅)‘𝑀)) |
| 37 | 36 | oveqd 7448 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))𝐾) = (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) |
| 38 | 37 | reseq1d 5996 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r‘𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) |
| 39 | 32, 38 | eqtrd 2777 |
1
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) |