MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetglem1 Structured version   Visualization version   GIF version

Theorem smadiadetglem1 22626
Description: Lemma 1 for smadiadetg 22628. (Contributed by AV, 13-Feb-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
Assertion
Ref Expression
smadiadetglem1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))

Proof of Theorem smadiadetglem1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpodifsnif 7530 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ (𝑖𝑀𝑗))
2 mpodifsnif 7530 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ (𝑖𝑀𝑗))
31, 2eqtr4i 2760 . . . 4 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
4 difss 4116 . . . . . 6 (𝑁 ∖ {𝐾}) ⊆ 𝑁
5 ssid 3986 . . . . . 6 𝑁𝑁
64, 5pm3.2i 470 . . . . 5 ((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁)
7 resmpo 7535 . . . . 5 (((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
86, 7mp1i 13 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
9 resmpo 7535 . . . . 5 (((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
106, 9mp1i 13 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
113, 8, 103eqtr4a 2795 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
12 simp1 1136 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑀𝐵)
13 simp3 1138 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅))
14 simp2 1137 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝐾𝑁)
15 smadiadet.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
16 smadiadet.b . . . . . 6 𝐵 = (Base‘𝐴)
17 eqid 2734 . . . . . 6 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
18 eqid 2734 . . . . . 6 (0g𝑅) = (0g𝑅)
1915, 16, 17, 18marrepval 22517 . . . . 5 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
2012, 13, 14, 14, 19syl22anc 838 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
2120reseq1d 5976 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
22 smadiadet.r . . . . . 6 𝑅 ∈ CRing
23 crngring 20211 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 eqid 2734 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2734 . . . . . . . 8 (1r𝑅) = (1r𝑅)
2624, 25ringidcl 20231 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2723, 26syl 17 . . . . . 6 (𝑅 ∈ CRing → (1r𝑅) ∈ (Base‘𝑅))
2822, 27mp1i 13 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
2915, 16, 17, 18marrepval 22517 . . . . 5 (((𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
3012, 28, 14, 14, 29syl22anc 838 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
3130reseq1d 5976 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3211, 21, 313eqtr4d 2779 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3322, 23ax-mp 5 . . . . . 6 𝑅 ∈ Ring
3415, 16, 25minmar1marrep 22605 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r𝑅)))
3533, 12, 34sylancr 587 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r𝑅)))
3635eqcomd 2740 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑀(𝑁 matRRep 𝑅)(1r𝑅)) = ((𝑁 minMatR1 𝑅)‘𝑀))
3736oveqd 7430 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾))
3837reseq1d 5976 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3932, 38eqtrd 2769 1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cdif 3928  wss 3931  ifcif 4505  {csn 4606   × cxp 5663  cres 5667  cfv 6541  (class class class)co 7413  cmpo 7415  Basecbs 17230  0gc0g 17456  1rcur 20147  Ringcrg 20199  CRingccrg 20200   Mat cmat 22360   matRRep cmarrep 22511   maDet cmdat 22539   minMatR1 cminmar1 22588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-plusg 17287  df-0g 17458  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mgp 20107  df-ur 20148  df-ring 20201  df-cring 20202  df-mat 22361  df-marrep 22513  df-minmar1 22590
This theorem is referenced by:  smadiadetg  22628
  Copyright terms: Public domain W3C validator