MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetglem1 Structured version   Visualization version   GIF version

Theorem smadiadetglem1 21275
Description: Lemma 1 for smadiadetg 21277. (Contributed by AV, 13-Feb-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
Assertion
Ref Expression
smadiadetglem1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))

Proof of Theorem smadiadetglem1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpodifsnif 7257 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ (𝑖𝑀𝑗))
2 mpodifsnif 7257 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ (𝑖𝑀𝑗))
31, 2eqtr4i 2850 . . . 4 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
4 difss 4094 . . . . . 6 (𝑁 ∖ {𝐾}) ⊆ 𝑁
5 ssid 3975 . . . . . 6 𝑁𝑁
64, 5pm3.2i 474 . . . . 5 ((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁)
7 resmpo 7262 . . . . 5 (((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
86, 7mp1i 13 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
9 resmpo 7262 . . . . 5 (((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
106, 9mp1i 13 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
113, 8, 103eqtr4a 2885 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
12 simp1 1133 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑀𝐵)
13 simp3 1135 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅))
14 simp2 1134 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝐾𝑁)
15 smadiadet.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
16 smadiadet.b . . . . . 6 𝐵 = (Base‘𝐴)
17 eqid 2824 . . . . . 6 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
18 eqid 2824 . . . . . 6 (0g𝑅) = (0g𝑅)
1915, 16, 17, 18marrepval 21166 . . . . 5 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
2012, 13, 14, 14, 19syl22anc 837 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
2120reseq1d 5840 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
22 smadiadet.r . . . . . 6 𝑅 ∈ CRing
23 crngring 19306 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 eqid 2824 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2824 . . . . . . . 8 (1r𝑅) = (1r𝑅)
2624, 25ringidcl 19316 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2723, 26syl 17 . . . . . 6 (𝑅 ∈ CRing → (1r𝑅) ∈ (Base‘𝑅))
2822, 27mp1i 13 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
2915, 16, 17, 18marrepval 21166 . . . . 5 (((𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
3012, 28, 14, 14, 29syl22anc 837 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
3130reseq1d 5840 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3211, 21, 313eqtr4d 2869 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3322, 23ax-mp 5 . . . . . 6 𝑅 ∈ Ring
3415, 16, 25minmar1marrep 21254 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r𝑅)))
3533, 12, 34sylancr 590 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r𝑅)))
3635eqcomd 2830 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑀(𝑁 matRRep 𝑅)(1r𝑅)) = ((𝑁 minMatR1 𝑅)‘𝑀))
3736oveqd 7163 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾))
3837reseq1d 5840 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3932, 38eqtrd 2859 1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cdif 3916  wss 3919  ifcif 4450  {csn 4550   × cxp 5541  cres 5545  cfv 6344  (class class class)co 7146  cmpo 7148  Basecbs 16481  0gc0g 16711  1rcur 19249  Ringcrg 19295  CRingccrg 19296   Mat cmat 21011   matRRep cmarrep 21160   maDet cmdat 21188   minMatR1 cminmar1 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-plusg 16576  df-0g 16713  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-mgp 19238  df-ur 19250  df-ring 19297  df-cring 19298  df-mat 21012  df-marrep 21162  df-minmar1 21239
This theorem is referenced by:  smadiadetg  21277
  Copyright terms: Public domain W3C validator