MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetglem1 Structured version   Visualization version   GIF version

Theorem smadiadetglem1 22155
Description: Lemma 1 for smadiadetg 22157. (Contributed by AV, 13-Feb-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
Assertion
Ref Expression
smadiadetglem1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))

Proof of Theorem smadiadetglem1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpodifsnif 7518 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ (𝑖𝑀𝑗))
2 mpodifsnif 7518 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ (𝑖𝑀𝑗))
31, 2eqtr4i 2764 . . . 4 (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
4 difss 4130 . . . . . 6 (𝑁 ∖ {𝐾}) ⊆ 𝑁
5 ssid 4003 . . . . . 6 𝑁𝑁
64, 5pm3.2i 472 . . . . 5 ((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁)
7 resmpo 7523 . . . . 5 (((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
86, 7mp1i 13 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
9 resmpo 7523 . . . . 5 (((𝑁 ∖ {𝐾}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
106, 9mp1i 13 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
113, 8, 103eqtr4a 2799 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
12 simp1 1137 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑀𝐵)
13 simp3 1139 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅))
14 simp2 1138 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝐾𝑁)
15 smadiadet.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
16 smadiadet.b . . . . . 6 𝐵 = (Base‘𝐴)
17 eqid 2733 . . . . . 6 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
18 eqid 2733 . . . . . 6 (0g𝑅) = (0g𝑅)
1915, 16, 17, 18marrepval 22046 . . . . 5 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
2012, 13, 14, 14, 19syl22anc 838 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
2120reseq1d 5978 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
22 smadiadet.r . . . . . 6 𝑅 ∈ CRing
23 crngring 20059 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2733 . . . . . . . 8 (1r𝑅) = (1r𝑅)
2624, 25ringidcl 20073 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2723, 26syl 17 . . . . . 6 (𝑅 ∈ CRing → (1r𝑅) ∈ (Base‘𝑅))
2822, 27mp1i 13 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
2915, 16, 17, 18marrepval 22046 . . . . 5 (((𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
3012, 28, 14, 14, 29syl22anc 838 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
3130reseq1d 5978 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3211, 21, 313eqtr4d 2783 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3322, 23ax-mp 5 . . . . . 6 𝑅 ∈ Ring
3415, 16, 25minmar1marrep 22134 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r𝑅)))
3533, 12, 34sylancr 588 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅)(1r𝑅)))
3635eqcomd 2739 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑀(𝑁 matRRep 𝑅)(1r𝑅)) = ((𝑁 minMatR1 𝑅)‘𝑀))
3736oveqd 7421 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) = (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾))
3837reseq1d 5978 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)(1r𝑅))𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
3932, 38eqtrd 2773 1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cdif 3944  wss 3947  ifcif 4527  {csn 4627   × cxp 5673  cres 5677  cfv 6540  (class class class)co 7404  cmpo 7406  Basecbs 17140  0gc0g 17381  1rcur 19996  Ringcrg 20047  CRingccrg 20048   Mat cmat 21889   matRRep cmarrep 22040   maDet cmdat 22068   minMatR1 cminmar1 22117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-mat 21890  df-marrep 22042  df-minmar1 22119
This theorem is referenced by:  smadiadetg  22157
  Copyright terms: Public domain W3C validator