| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpompt | Structured version Visualization version GIF version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpompt.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpompt | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5696 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | mpteq1i 5186 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) |
| 3 | mpompt.1 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
| 4 | 3 | mpomptx 7466 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| 5 | 2, 4 | eqtr3i 2754 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4579 〈cop 4585 ∪ ciun 4944 ↦ cmpt 5176 × cxp 5621 ∈ cmpo 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-iun 4946 df-opab 5158 df-mpt 5177 df-xp 5629 df-rel 5630 df-oprab 7357 df-mpo 7358 |
| This theorem is referenced by: fconstmpo 7470 fnov 7484 fmpoco 8035 fimaproj 8075 xpf1o 9063 resfval2 17818 idfusubc0 17824 catcisolem 18035 xpccatid 18112 curf2ndf 18171 evlslem4 21999 mdetunilem9 22523 txbas 23470 cnmpt1st 23571 cnmpt2nd 23572 cnmpt2c 23573 cnmpt2t 23576 txhmeo 23706 txswaphmeolem 23707 ptuncnv 23710 ptunhmeo 23711 xpstopnlem1 23712 xkohmeo 23718 prdstmdd 24027 ucnimalem 24183 fmucndlem 24194 fsum2cn 24778 conjga 33125 elrgspnlem2 33193 curfv 37579 aks6d1c2p1 42091 aks6d1c3 42096 aks6d1c4 42097 aks6d1c6lem2 42144 aks6d1c6lem4 42146 aks6d1c7lem1 42153 fmpocos 42207 lmod1zr 48479 2arymaptf 48638 iinfssclem1 49040 idfudiag1 49511 |
| Copyright terms: Public domain | W3C validator |