MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpompt Structured version   Visualization version   GIF version

Theorem mpompt 7366
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpompt (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpompt
StepHypRef Expression
1 iunxpconst 5650 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
21mpteq1i 5166 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
3 mpompt.1 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
43mpomptx 7365 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
52, 4eqtr3i 2768 1 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {csn 4558  cop 4564   ciun 4921  cmpt 5153   × cxp 5578  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-iun 4923  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  fconstmpo  7369  fnov  7383  fmpoco  7906  fimaproj  7947  xpf1o  8875  resfval2  17524  catcisolem  17741  xpccatid  17821  curf2ndf  17881  evlslem4  21194  mdetunilem9  21677  txbas  22626  cnmpt1st  22727  cnmpt2nd  22728  cnmpt2c  22729  cnmpt2t  22732  txhmeo  22862  txswaphmeolem  22863  ptuncnv  22866  ptunhmeo  22867  xpstopnlem1  22868  xkohmeo  22874  prdstmdd  23183  ucnimalem  23340  fmucndlem  23351  fsum2cn  23940  curfv  35684  idfusubc0  45311  lmod1zr  45722  2arymaptf  45886
  Copyright terms: Public domain W3C validator