Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpompt | Structured version Visualization version GIF version |
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpompt.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpompt | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5594 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
2 | 1 | mpteq1i 5123 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) |
3 | mpompt.1 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
4 | 3 | mpomptx 7260 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
5 | 2, 4 | eqtr3i 2784 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {csn 4523 〈cop 4529 ∪ ciun 4884 ↦ cmpt 5113 × cxp 5523 ∈ cmpo 7153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-iun 4886 df-opab 5096 df-mpt 5114 df-xp 5531 df-rel 5532 df-oprab 7155 df-mpo 7156 |
This theorem is referenced by: fconstmpo 7264 fnov 7278 fmpoco 7796 fimaproj 7835 xpf1o 8702 resfval2 17223 catcisolem 17433 xpccatid 17505 curf2ndf 17564 evlslem4 20838 mdetunilem9 21321 txbas 22268 cnmpt1st 22369 cnmpt2nd 22370 cnmpt2c 22371 cnmpt2t 22374 txhmeo 22504 txswaphmeolem 22505 ptuncnv 22508 ptunhmeo 22509 xpstopnlem1 22510 xkohmeo 22516 prdstmdd 22825 ucnimalem 22982 fmucndlem 22993 fsum2cn 23573 curfv 35318 idfusubc0 44857 lmod1zr 45268 2arymaptf 45432 |
Copyright terms: Public domain | W3C validator |