| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpompt | Structured version Visualization version GIF version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpompt.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpompt | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5714 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | mpteq1i 5201 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) |
| 3 | mpompt.1 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
| 4 | 3 | mpomptx 7505 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| 5 | 2, 4 | eqtr3i 2755 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4592 〈cop 4598 ∪ ciun 4958 ↦ cmpt 5191 × cxp 5639 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iun 4960 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: fconstmpo 7509 fnov 7523 fmpoco 8077 fimaproj 8117 xpf1o 9109 resfval2 17862 idfusubc0 17868 catcisolem 18079 xpccatid 18156 curf2ndf 18215 evlslem4 21990 mdetunilem9 22514 txbas 23461 cnmpt1st 23562 cnmpt2nd 23563 cnmpt2c 23564 cnmpt2t 23567 txhmeo 23697 txswaphmeolem 23698 ptuncnv 23701 ptunhmeo 23702 xpstopnlem1 23703 xkohmeo 23709 prdstmdd 24018 ucnimalem 24174 fmucndlem 24185 fsum2cn 24769 conjga 33134 elrgspnlem2 33201 curfv 37601 aks6d1c2p1 42113 aks6d1c3 42118 aks6d1c4 42119 aks6d1c6lem2 42166 aks6d1c6lem4 42168 aks6d1c7lem1 42175 fmpocos 42229 lmod1zr 48486 2arymaptf 48645 iinfssclem1 49047 idfudiag1 49518 |
| Copyright terms: Public domain | W3C validator |