MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpompt Structured version   Visualization version   GIF version

Theorem mpompt 7261
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpompt (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpompt
StepHypRef Expression
1 iunxpconst 5594 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
21mpteq1i 5123 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
3 mpompt.1 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
43mpomptx 7260 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
52, 4eqtr3i 2784 1 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {csn 4523  cop 4529   ciun 4884  cmpt 5113   × cxp 5523  cmpo 7153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-iun 4886  df-opab 5096  df-mpt 5114  df-xp 5531  df-rel 5532  df-oprab 7155  df-mpo 7156
This theorem is referenced by:  fconstmpo  7264  fnov  7278  fmpoco  7796  fimaproj  7835  xpf1o  8702  resfval2  17223  catcisolem  17433  xpccatid  17505  curf2ndf  17564  evlslem4  20838  mdetunilem9  21321  txbas  22268  cnmpt1st  22369  cnmpt2nd  22370  cnmpt2c  22371  cnmpt2t  22374  txhmeo  22504  txswaphmeolem  22505  ptuncnv  22508  ptunhmeo  22509  xpstopnlem1  22510  xkohmeo  22516  prdstmdd  22825  ucnimalem  22982  fmucndlem  22993  fsum2cn  23573  curfv  35318  idfusubc0  44857  lmod1zr  45268  2arymaptf  45432
  Copyright terms: Public domain W3C validator