| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpompt | Structured version Visualization version GIF version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpompt.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpompt | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5711 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | mpteq1i 5198 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) |
| 3 | mpompt.1 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
| 4 | 3 | mpomptx 7502 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| 5 | 2, 4 | eqtr3i 2754 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4589 〈cop 4595 ∪ ciun 4955 ↦ cmpt 5188 × cxp 5636 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-iun 4957 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: fconstmpo 7506 fnov 7520 fmpoco 8074 fimaproj 8114 xpf1o 9103 resfval2 17855 idfusubc0 17861 catcisolem 18072 xpccatid 18149 curf2ndf 18208 evlslem4 21983 mdetunilem9 22507 txbas 23454 cnmpt1st 23555 cnmpt2nd 23556 cnmpt2c 23557 cnmpt2t 23560 txhmeo 23690 txswaphmeolem 23691 ptuncnv 23694 ptunhmeo 23695 xpstopnlem1 23696 xkohmeo 23702 prdstmdd 24011 ucnimalem 24167 fmucndlem 24178 fsum2cn 24762 conjga 33127 elrgspnlem2 33194 curfv 37594 aks6d1c2p1 42106 aks6d1c3 42111 aks6d1c4 42112 aks6d1c6lem2 42159 aks6d1c6lem4 42161 aks6d1c7lem1 42168 fmpocos 42222 lmod1zr 48482 2arymaptf 48641 iinfssclem1 49043 idfudiag1 49514 |
| Copyright terms: Public domain | W3C validator |