| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpompt | Structured version Visualization version GIF version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpompt.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpompt | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5692 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | mpteq1i 5184 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) |
| 3 | mpompt.1 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
| 4 | 3 | mpomptx 7465 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| 5 | 2, 4 | eqtr3i 2758 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {csn 4575 〈cop 4581 ∪ ciun 4941 ↦ cmpt 5174 × cxp 5617 ∈ cmpo 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-iun 4943 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: fconstmpo 7469 fnov 7483 fmpoco 8031 fimaproj 8071 xpf1o 9059 resfval2 17802 idfusubc0 17808 catcisolem 18019 xpccatid 18096 curf2ndf 18155 evlslem4 22012 mdetunilem9 22536 txbas 23483 cnmpt1st 23584 cnmpt2nd 23585 cnmpt2c 23586 cnmpt2t 23589 txhmeo 23719 txswaphmeolem 23720 ptuncnv 23723 ptunhmeo 23724 xpstopnlem1 23725 xkohmeo 23731 prdstmdd 24040 ucnimalem 24195 fmucndlem 24206 fsum2cn 24790 conjga 33146 elrgspnlem2 33217 mplvrpmga 33593 curfv 37660 aks6d1c2p1 42231 aks6d1c3 42236 aks6d1c4 42237 aks6d1c6lem2 42284 aks6d1c6lem4 42286 aks6d1c7lem1 42293 fmpocos 42352 lmod1zr 48618 2arymaptf 48777 iinfssclem1 49179 idfudiag1 49650 |
| Copyright terms: Public domain | W3C validator |