MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpompt Structured version   Visualization version   GIF version

Theorem mpompt 7460
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpompt (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpompt
StepHypRef Expression
1 iunxpconst 5689 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
21mpteq1i 5182 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
3 mpompt.1 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
43mpomptx 7459 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
52, 4eqtr3i 2756 1 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {csn 4576  cop 4582   ciun 4941  cmpt 5172   × cxp 5614  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-iun 4943  df-opab 5154  df-mpt 5173  df-xp 5622  df-rel 5623  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  fconstmpo  7463  fnov  7477  fmpoco  8025  fimaproj  8065  xpf1o  9052  resfval2  17797  idfusubc0  17803  catcisolem  18014  xpccatid  18091  curf2ndf  18150  evlslem4  22009  mdetunilem9  22533  txbas  23480  cnmpt1st  23581  cnmpt2nd  23582  cnmpt2c  23583  cnmpt2t  23586  txhmeo  23716  txswaphmeolem  23717  ptuncnv  23720  ptunhmeo  23721  xpstopnlem1  23722  xkohmeo  23728  prdstmdd  24037  ucnimalem  24192  fmucndlem  24203  fsum2cn  24787  conjga  33134  elrgspnlem2  33205  mplvrpmga  33570  curfv  37639  aks6d1c2p1  42150  aks6d1c3  42155  aks6d1c4  42156  aks6d1c6lem2  42203  aks6d1c6lem4  42205  aks6d1c7lem1  42212  fmpocos  42266  lmod1zr  48524  2arymaptf  48683  iinfssclem1  49085  idfudiag1  49556
  Copyright terms: Public domain W3C validator