| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpompt | Structured version Visualization version GIF version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpompt.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpompt | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5689 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | mpteq1i 5182 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) |
| 3 | mpompt.1 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
| 4 | 3 | mpomptx 7459 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| 5 | 2, 4 | eqtr3i 2756 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {csn 4576 〈cop 4582 ∪ ciun 4941 ↦ cmpt 5172 × cxp 5614 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-iun 4943 df-opab 5154 df-mpt 5173 df-xp 5622 df-rel 5623 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: fconstmpo 7463 fnov 7477 fmpoco 8025 fimaproj 8065 xpf1o 9052 resfval2 17797 idfusubc0 17803 catcisolem 18014 xpccatid 18091 curf2ndf 18150 evlslem4 22009 mdetunilem9 22533 txbas 23480 cnmpt1st 23581 cnmpt2nd 23582 cnmpt2c 23583 cnmpt2t 23586 txhmeo 23716 txswaphmeolem 23717 ptuncnv 23720 ptunhmeo 23721 xpstopnlem1 23722 xkohmeo 23728 prdstmdd 24037 ucnimalem 24192 fmucndlem 24203 fsum2cn 24787 conjga 33134 elrgspnlem2 33205 mplvrpmga 33570 curfv 37639 aks6d1c2p1 42150 aks6d1c3 42155 aks6d1c4 42156 aks6d1c6lem2 42203 aks6d1c6lem4 42205 aks6d1c7lem1 42212 fmpocos 42266 lmod1zr 48524 2arymaptf 48683 iinfssclem1 49085 idfudiag1 49556 |
| Copyright terms: Public domain | W3C validator |