MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mposnif Structured version   Visualization version   GIF version

Theorem mposnif 7368
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mposnif (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)

Proof of Theorem mposnif
StepHypRef Expression
1 elsni 4575 . . . 4 (𝑖 ∈ {𝑋} → 𝑖 = 𝑋)
21adantr 480 . . 3 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → 𝑖 = 𝑋)
32iftrued 4464 . 2 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐶)
43mpoeq3ia 7331 1 (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  ifcif 4456  {csn 4558  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-if 4457  df-sn 4559  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  mdetrsca2  21661  mdetrlin2  21664  mdetunilem5  21673  smadiadetglem2  21729
  Copyright terms: Public domain W3C validator