| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mposnif | Structured version Visualization version GIF version | ||
| Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.) |
| Ref | Expression |
|---|---|
| mposnif | ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4606 | . . . 4 ⊢ (𝑖 ∈ {𝑋} → 𝑖 = 𝑋) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑖 ∈ {𝑋} ∧ 𝑗 ∈ 𝐵) → 𝑖 = 𝑋) |
| 3 | 2 | iftrued 4496 | . 2 ⊢ ((𝑖 ∈ {𝑋} ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐶) |
| 4 | 3 | mpoeq3ia 7467 | 1 ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4488 {csn 4589 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 df-sn 4590 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: mdetrsca2 22491 mdetrlin2 22494 mdetunilem5 22503 smadiadetglem2 22559 |
| Copyright terms: Public domain | W3C validator |