![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mposnif | Structured version Visualization version GIF version |
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.) |
Ref | Expression |
---|---|
mposnif | ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4665 | . . . 4 ⊢ (𝑖 ∈ {𝑋} → 𝑖 = 𝑋) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑖 ∈ {𝑋} ∧ 𝑗 ∈ 𝐵) → 𝑖 = 𝑋) |
3 | 2 | iftrued 4556 | . 2 ⊢ ((𝑖 ∈ {𝑋} ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐶) |
4 | 3 | mpoeq3ia 7528 | 1 ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ifcif 4548 {csn 4648 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 df-sn 4649 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: mdetrsca2 22631 mdetrlin2 22634 mdetunilem5 22643 smadiadetglem2 22699 |
Copyright terms: Public domain | W3C validator |