| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mppspstlem | Structured version Visualization version GIF version | ||
| Description: Lemma for mppspst 35538. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mppsval.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| mppsval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| mppsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
| Ref | Expression |
|---|---|
| mppspstlem | ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oprab 7417 | . 2 ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} = {𝑥 ∣ ∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))} | |
| 2 | df-ot 4615 | . . . . . . . . . 10 ⊢ 〈𝑑, ℎ, 𝑎〉 = 〈〈𝑑, ℎ〉, 𝑎〉 | |
| 3 | 2 | eqeq2i 2747 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑑, ℎ, 𝑎〉 ↔ 𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉) |
| 4 | 3 | biimpri 228 | . . . . . . . 8 ⊢ (𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 → 𝑥 = 〈𝑑, ℎ, 𝑎〉) |
| 5 | 4 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 → (𝑥 ∈ 𝑃 ↔ 〈𝑑, ℎ, 𝑎〉 ∈ 𝑃)) |
| 6 | 5 | biimpar 477 | . . . . . 6 ⊢ ((𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ 〈𝑑, ℎ, 𝑎〉 ∈ 𝑃) → 𝑥 ∈ 𝑃) |
| 7 | 6 | adantrr 717 | . . . . 5 ⊢ ((𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))) → 𝑥 ∈ 𝑃) |
| 8 | 7 | exlimiv 1929 | . . . 4 ⊢ (∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))) → 𝑥 ∈ 𝑃) |
| 9 | 8 | exlimivv 1931 | . . 3 ⊢ (∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))) → 𝑥 ∈ 𝑃) |
| 10 | 9 | abssi 4050 | . 2 ⊢ {𝑥 ∣ ∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))} ⊆ 𝑃 |
| 11 | 1, 10 | eqsstri 4010 | 1 ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 ⊆ wss 3931 〈cop 4612 〈cotp 4614 ‘cfv 6541 (class class class)co 7413 {coprab 7414 mPreStcmpst 35437 mClscmcls 35441 mPPStcmpps 35442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ss 3948 df-ot 4615 df-oprab 7417 |
| This theorem is referenced by: mppsval 35536 mppspst 35538 |
| Copyright terms: Public domain | W3C validator |