Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsind Structured version   Visualization version   GIF version

Theorem mclsind 35635
Description: Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsind.4 (𝜑𝐵𝑄)
mclsind.5 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
mclsind.6 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
Assertion
Ref Expression
mclsind (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑥,𝑚,𝐻,𝑜,𝑝,𝑠,𝑣   𝑦,𝑚,𝐵,𝑜,𝑝,𝑠,𝑣,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥   𝑚,𝐿,𝑜,𝑝,𝑠,𝑥,𝑦   𝐴,𝑚,𝑜,𝑝,𝑠   𝑇,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑄,𝑚,𝑜,𝑝,𝑠,𝑣   𝑣,𝑉,𝑥   𝑚,𝑊,𝑜,𝑝,𝑠,𝑥   𝑚,𝐾,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣)   𝐶(𝑦)   𝐷(𝑥,𝑦,𝑣,𝑚,𝑜,𝑠,𝑝)   𝑄(𝑥,𝑦)   𝑇(𝑣)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝐿(𝑣)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)   𝑊(𝑦,𝑣)

Proof of Theorem mclsind
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mclsval.d . . 3 𝐷 = (mDV‘𝑇)
2 mclsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
4 mclsval.1 . . 3 (𝜑𝑇 ∈ mFS)
5 mclsval.2 . . 3 (𝜑𝐾𝐷)
6 mclsval.3 . . 3 (𝜑𝐵𝐸)
7 mclsax.h . . 3 𝐻 = (mVH‘𝑇)
8 mclsax.a . . 3 𝐴 = (mAx‘𝑇)
9 mclsax.l . . 3 𝐿 = (mSubst‘𝑇)
10 mclsax.w . . 3 𝑊 = (mVars‘𝑇)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mclsval 35628 . 2 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
12 mclsind.4 . . . . . . 7 (𝜑𝐵𝑄)
136, 12ssind 4190 . . . . . 6 (𝜑𝐵 ⊆ (𝐸𝑄))
14 mclsax.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
1514, 2, 7mvhf 35623 . . . . . . . . . 10 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
164, 15syl 17 . . . . . . . . 9 (𝜑𝐻:𝑉𝐸)
1716ffnd 6657 . . . . . . . 8 (𝜑𝐻 Fn 𝑉)
1816ffvelcdmda 7023 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝐸)
19 mclsind.5 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
2018, 19elind 4149 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ (𝐸𝑄))
2120ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄))
22 ffnfv 7058 . . . . . . . 8 (𝐻:𝑉⟶(𝐸𝑄) ↔ (𝐻 Fn 𝑉 ∧ ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄)))
2317, 21, 22sylanbrc 583 . . . . . . 7 (𝜑𝐻:𝑉⟶(𝐸𝑄))
2423frnd 6664 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (𝐸𝑄))
2513, 24unssd 4141 . . . . 5 (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄))
26 id 22 . . . . . . . . . . . 12 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄))
27 inss2 4187 . . . . . . . . . . . 12 (𝐸𝑄) ⊆ 𝑄
2826, 27sstrdi 3943 . . . . . . . . . . 11 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)
294adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑇 ∈ mFS)
30 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (mREx‘𝑇) = (mREx‘𝑇)
3114, 30, 9, 2msubff 35595 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ mFS → 𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸m 𝐸))
32 frn 6663 . . . . . . . . . . . . . . . . . . . 20 (𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸m 𝐸) → ran 𝐿 ⊆ (𝐸m 𝐸))
3329, 31, 323syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ran 𝐿 ⊆ (𝐸m 𝐸))
34 simpr2 1196 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ ran 𝐿)
3533, 34sseldd 3931 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ (𝐸m 𝐸))
36 elmapi 8779 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝐸m 𝐸) → 𝑠:𝐸𝐸)
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠:𝐸𝐸)
38 eqid 2733 . . . . . . . . . . . . . . . . . . . . . 22 (mStat‘𝑇) = (mStat‘𝑇)
398, 38maxsta 35619 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
4029, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mStat‘𝑇))
41 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (mPreSt‘𝑇) = (mPreSt‘𝑇)
4241, 38mstapst 35612 . . . . . . . . . . . . . . . . . . . 20 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
4340, 42sstrdi 3943 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mPreSt‘𝑇))
44 simpr1 1195 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴)
4543, 44sseldd 3931 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
461, 2, 41elmpst 35601 . . . . . . . . . . . . . . . . . . 19 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
4746simp3bi 1147 . . . . . . . . . . . . . . . . . 18 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → 𝑝𝐸)
4845, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑝𝐸)
4937, 48ffvelcdmd 7024 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → (𝑠𝑝) ∈ 𝐸)
50493adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝐸)
51 mclsind.6 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
5250, 51elind 4149 . . . . . . . . . . . . . 14 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))
53523exp 1119 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
54533expd 1354 . . . . . . . . . . . 12 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → (𝑠 ∈ ran 𝐿 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))))
5554imp31 417 . . . . . . . . . . 11 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5628, 55syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5756impd 410 . . . . . . . . 9 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5857ralrimiva 3125 . . . . . . . 8 ((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5958ex 412 . . . . . . 7 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6059alrimiv 1928 . . . . . 6 (𝜑 → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6160alrimivv 1929 . . . . 5 (𝜑 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
622fvexi 6842 . . . . . . 7 𝐸 ∈ V
6362inex1 5257 . . . . . 6 (𝐸𝑄) ∈ V
64 sseq2 3957 . . . . . . 7 (𝑐 = (𝐸𝑄) → ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄)))
65 sseq2 3957 . . . . . . . . . . . . 13 (𝑐 = (𝐸𝑄) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄)))
6665anbi1d 631 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
67 eleq2 2822 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑝) ∈ (𝐸𝑄)))
6866, 67imbi12d 344 . . . . . . . . . . 11 (𝑐 = (𝐸𝑄) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6968ralbidv 3156 . . . . . . . . . 10 (𝑐 = (𝐸𝑄) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
7069imbi2d 340 . . . . . . . . 9 (𝑐 = (𝐸𝑄) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7170albidv 1921 . . . . . . . 8 (𝑐 = (𝐸𝑄) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
72712albidv 1924 . . . . . . 7 (𝑐 = (𝐸𝑄) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7364, 72anbi12d 632 . . . . . 6 (𝑐 = (𝐸𝑄) → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))))
7463, 73elab 3631 . . . . 5 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7525, 61, 74sylanbrc 583 . . . 4 (𝜑 → (𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
76 intss1 4913 . . . 4 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7775, 76syl 17 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7877, 27sstrdi 3943 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑄)
7911, 78eqsstrd 3965 1 (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3048  cun 3896  cin 3897  wss 3898  cotp 4583   cint 4897   class class class wbr 5093   × cxp 5617  ccnv 5618  ran crn 5620  cima 5622   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  pm cpm 8757  Fincfn 8875  mVRcmvar 35526  mAxcmax 35530  mRExcmrex 35531  mExcmex 35532  mDVcmdv 35533  mVarscmvrs 35534  mSubstcmsub 35536  mVHcmvh 35537  mPreStcmpst 35538  mStatcmsta 35540  mFScmfs 35541  mClscmcls 35542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-frmd 18759  df-mrex 35551  df-mex 35552  df-mrsub 35555  df-msub 35556  df-mvh 35557  df-mpst 35558  df-msr 35559  df-msta 35560  df-mfs 35561  df-mcls 35562
This theorem is referenced by:  mclspps  35649
  Copyright terms: Public domain W3C validator