Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsind Structured version   Visualization version   GIF version

Theorem mclsind 35538
Description: Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsind.4 (𝜑𝐵𝑄)
mclsind.5 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
mclsind.6 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
Assertion
Ref Expression
mclsind (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑥,𝑚,𝐻,𝑜,𝑝,𝑠,𝑣   𝑦,𝑚,𝐵,𝑜,𝑝,𝑠,𝑣,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥   𝑚,𝐿,𝑜,𝑝,𝑠,𝑥,𝑦   𝐴,𝑚,𝑜,𝑝,𝑠   𝑇,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑄,𝑚,𝑜,𝑝,𝑠,𝑣   𝑣,𝑉,𝑥   𝑚,𝑊,𝑜,𝑝,𝑠,𝑥   𝑚,𝐾,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣)   𝐶(𝑦)   𝐷(𝑥,𝑦,𝑣,𝑚,𝑜,𝑠,𝑝)   𝑄(𝑥,𝑦)   𝑇(𝑣)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝐿(𝑣)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)   𝑊(𝑦,𝑣)

Proof of Theorem mclsind
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mclsval.d . . 3 𝐷 = (mDV‘𝑇)
2 mclsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
4 mclsval.1 . . 3 (𝜑𝑇 ∈ mFS)
5 mclsval.2 . . 3 (𝜑𝐾𝐷)
6 mclsval.3 . . 3 (𝜑𝐵𝐸)
7 mclsax.h . . 3 𝐻 = (mVH‘𝑇)
8 mclsax.a . . 3 𝐴 = (mAx‘𝑇)
9 mclsax.l . . 3 𝐿 = (mSubst‘𝑇)
10 mclsax.w . . 3 𝑊 = (mVars‘𝑇)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mclsval 35531 . 2 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
12 mclsind.4 . . . . . . 7 (𝜑𝐵𝑄)
136, 12ssind 4262 . . . . . 6 (𝜑𝐵 ⊆ (𝐸𝑄))
14 mclsax.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
1514, 2, 7mvhf 35526 . . . . . . . . . 10 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
164, 15syl 17 . . . . . . . . 9 (𝜑𝐻:𝑉𝐸)
1716ffnd 6748 . . . . . . . 8 (𝜑𝐻 Fn 𝑉)
1816ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝐸)
19 mclsind.5 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
2018, 19elind 4223 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ (𝐸𝑄))
2120ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄))
22 ffnfv 7153 . . . . . . . 8 (𝐻:𝑉⟶(𝐸𝑄) ↔ (𝐻 Fn 𝑉 ∧ ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄)))
2317, 21, 22sylanbrc 582 . . . . . . 7 (𝜑𝐻:𝑉⟶(𝐸𝑄))
2423frnd 6755 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (𝐸𝑄))
2513, 24unssd 4215 . . . . 5 (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄))
26 id 22 . . . . . . . . . . . 12 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄))
27 inss2 4259 . . . . . . . . . . . 12 (𝐸𝑄) ⊆ 𝑄
2826, 27sstrdi 4021 . . . . . . . . . . 11 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)
294adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑇 ∈ mFS)
30 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (mREx‘𝑇) = (mREx‘𝑇)
3114, 30, 9, 2msubff 35498 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ mFS → 𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸m 𝐸))
32 frn 6754 . . . . . . . . . . . . . . . . . . . 20 (𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸m 𝐸) → ran 𝐿 ⊆ (𝐸m 𝐸))
3329, 31, 323syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ran 𝐿 ⊆ (𝐸m 𝐸))
34 simpr2 1195 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ ran 𝐿)
3533, 34sseldd 4009 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ (𝐸m 𝐸))
36 elmapi 8907 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝐸m 𝐸) → 𝑠:𝐸𝐸)
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠:𝐸𝐸)
38 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (mStat‘𝑇) = (mStat‘𝑇)
398, 38maxsta 35522 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
4029, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mStat‘𝑇))
41 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (mPreSt‘𝑇) = (mPreSt‘𝑇)
4241, 38mstapst 35515 . . . . . . . . . . . . . . . . . . . 20 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
4340, 42sstrdi 4021 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mPreSt‘𝑇))
44 simpr1 1194 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴)
4543, 44sseldd 4009 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
461, 2, 41elmpst 35504 . . . . . . . . . . . . . . . . . . 19 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
4746simp3bi 1147 . . . . . . . . . . . . . . . . . 18 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → 𝑝𝐸)
4845, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑝𝐸)
4937, 48ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → (𝑠𝑝) ∈ 𝐸)
50493adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝐸)
51 mclsind.6 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
5250, 51elind 4223 . . . . . . . . . . . . . 14 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))
53523exp 1119 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
54533expd 1353 . . . . . . . . . . . 12 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → (𝑠 ∈ ran 𝐿 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))))
5554imp31 417 . . . . . . . . . . 11 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5628, 55syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5756impd 410 . . . . . . . . 9 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5857ralrimiva 3152 . . . . . . . 8 ((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5958ex 412 . . . . . . 7 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6059alrimiv 1926 . . . . . 6 (𝜑 → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6160alrimivv 1927 . . . . 5 (𝜑 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
622fvexi 6934 . . . . . . 7 𝐸 ∈ V
6362inex1 5335 . . . . . 6 (𝐸𝑄) ∈ V
64 sseq2 4035 . . . . . . 7 (𝑐 = (𝐸𝑄) → ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄)))
65 sseq2 4035 . . . . . . . . . . . . 13 (𝑐 = (𝐸𝑄) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄)))
6665anbi1d 630 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
67 eleq2 2833 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑝) ∈ (𝐸𝑄)))
6866, 67imbi12d 344 . . . . . . . . . . 11 (𝑐 = (𝐸𝑄) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6968ralbidv 3184 . . . . . . . . . 10 (𝑐 = (𝐸𝑄) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
7069imbi2d 340 . . . . . . . . 9 (𝑐 = (𝐸𝑄) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7170albidv 1919 . . . . . . . 8 (𝑐 = (𝐸𝑄) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
72712albidv 1922 . . . . . . 7 (𝑐 = (𝐸𝑄) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7364, 72anbi12d 631 . . . . . 6 (𝑐 = (𝐸𝑄) → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))))
7463, 73elab 3694 . . . . 5 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7525, 61, 74sylanbrc 582 . . . 4 (𝜑 → (𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
76 intss1 4987 . . . 4 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7775, 76syl 17 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7877, 27sstrdi 4021 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑄)
7911, 78eqsstrd 4047 1 (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  cun 3974  cin 3975  wss 3976  cotp 4656   cint 4970   class class class wbr 5166   × cxp 5698  ccnv 5699  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  pm cpm 8885  Fincfn 9003  mVRcmvar 35429  mAxcmax 35433  mRExcmrex 35434  mExcmex 35435  mDVcmdv 35436  mVarscmvrs 35437  mSubstcmsub 35439  mVHcmvh 35440  mPreStcmpst 35441  mStatcmsta 35443  mFScmfs 35444  mClscmcls 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-frmd 18884  df-mrex 35454  df-mex 35455  df-mrsub 35458  df-msub 35459  df-mvh 35460  df-mpst 35461  df-msr 35462  df-msta 35463  df-mfs 35464  df-mcls 35465
This theorem is referenced by:  mclspps  35552
  Copyright terms: Public domain W3C validator