Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsind Structured version   Visualization version   GIF version

Theorem mclsind 32013
 Description: Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsind.4 (𝜑𝐵𝑄)
mclsind.5 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
mclsind.6 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
Assertion
Ref Expression
mclsind (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑥,𝑚,𝐻,𝑜,𝑝,𝑠,𝑣   𝑦,𝑚,𝐵,𝑜,𝑝,𝑠,𝑣,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥   𝑚,𝐿,𝑜,𝑝,𝑠,𝑥,𝑦   𝐴,𝑚,𝑜,𝑝,𝑠   𝑇,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑄,𝑚,𝑜,𝑝,𝑠,𝑣   𝑣,𝑉,𝑥   𝑚,𝑊,𝑜,𝑝,𝑠,𝑥   𝑚,𝐾,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣)   𝐶(𝑦)   𝐷(𝑥,𝑦,𝑣,𝑚,𝑜,𝑠,𝑝)   𝑄(𝑥,𝑦)   𝑇(𝑣)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝐿(𝑣)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)   𝑊(𝑦,𝑣)

Proof of Theorem mclsind
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mclsval.d . . 3 𝐷 = (mDV‘𝑇)
2 mclsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
4 mclsval.1 . . 3 (𝜑𝑇 ∈ mFS)
5 mclsval.2 . . 3 (𝜑𝐾𝐷)
6 mclsval.3 . . 3 (𝜑𝐵𝐸)
7 mclsax.h . . 3 𝐻 = (mVH‘𝑇)
8 mclsax.a . . 3 𝐴 = (mAx‘𝑇)
9 mclsax.l . . 3 𝐿 = (mSubst‘𝑇)
10 mclsax.w . . 3 𝑊 = (mVars‘𝑇)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mclsval 32006 . 2 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
12 mclsind.4 . . . . . . 7 (𝜑𝐵𝑄)
136, 12ssind 4061 . . . . . 6 (𝜑𝐵 ⊆ (𝐸𝑄))
14 mclsax.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
1514, 2, 7mvhf 32001 . . . . . . . . . 10 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
164, 15syl 17 . . . . . . . . 9 (𝜑𝐻:𝑉𝐸)
1716ffnd 6279 . . . . . . . 8 (𝜑𝐻 Fn 𝑉)
1816ffvelrnda 6608 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝐸)
19 mclsind.5 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
2018, 19elind 4025 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ (𝐸𝑄))
2120ralrimiva 3175 . . . . . . . 8 (𝜑 → ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄))
22 ffnfv 6637 . . . . . . . 8 (𝐻:𝑉⟶(𝐸𝑄) ↔ (𝐻 Fn 𝑉 ∧ ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄)))
2317, 21, 22sylanbrc 580 . . . . . . 7 (𝜑𝐻:𝑉⟶(𝐸𝑄))
2423frnd 6285 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (𝐸𝑄))
2513, 24unssd 4016 . . . . 5 (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄))
26 id 22 . . . . . . . . . . . 12 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄))
27 inss2 4058 . . . . . . . . . . . 12 (𝐸𝑄) ⊆ 𝑄
2826, 27syl6ss 3839 . . . . . . . . . . 11 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)
294adantr 474 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑇 ∈ mFS)
30 eqid 2825 . . . . . . . . . . . . . . . . . . . . 21 (mREx‘𝑇) = (mREx‘𝑇)
3114, 30, 9, 2msubff 31973 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ mFS → 𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸𝑚 𝐸))
32 frn 6284 . . . . . . . . . . . . . . . . . . . 20 (𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸𝑚 𝐸) → ran 𝐿 ⊆ (𝐸𝑚 𝐸))
3329, 31, 323syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ran 𝐿 ⊆ (𝐸𝑚 𝐸))
34 simpr2 1256 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ ran 𝐿)
3533, 34sseldd 3828 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ (𝐸𝑚 𝐸))
36 elmapi 8144 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝐸𝑚 𝐸) → 𝑠:𝐸𝐸)
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠:𝐸𝐸)
38 eqid 2825 . . . . . . . . . . . . . . . . . . . . . 22 (mStat‘𝑇) = (mStat‘𝑇)
398, 38maxsta 31997 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
4029, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mStat‘𝑇))
41 eqid 2825 . . . . . . . . . . . . . . . . . . . . 21 (mPreSt‘𝑇) = (mPreSt‘𝑇)
4241, 38mstapst 31990 . . . . . . . . . . . . . . . . . . . 20 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
4340, 42syl6ss 3839 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mPreSt‘𝑇))
44 simpr1 1254 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴)
4543, 44sseldd 3828 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
461, 2, 41elmpst 31979 . . . . . . . . . . . . . . . . . . 19 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
4746simp3bi 1183 . . . . . . . . . . . . . . . . . 18 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → 𝑝𝐸)
4845, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑝𝐸)
4937, 48ffvelrnd 6609 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → (𝑠𝑝) ∈ 𝐸)
50493adant3 1168 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝐸)
51 mclsind.6 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
5250, 51elind 4025 . . . . . . . . . . . . . 14 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))
53523exp 1154 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
54533expd 1468 . . . . . . . . . . . 12 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → (𝑠 ∈ ran 𝐿 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))))
5554imp31 410 . . . . . . . . . . 11 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5628, 55syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5756impd 400 . . . . . . . . 9 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5857ralrimiva 3175 . . . . . . . 8 ((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5958ex 403 . . . . . . 7 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6059alrimiv 2028 . . . . . 6 (𝜑 → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6160alrimivv 2029 . . . . 5 (𝜑 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
622fvexi 6447 . . . . . . 7 𝐸 ∈ V
6362inex1 5024 . . . . . 6 (𝐸𝑄) ∈ V
64 sseq2 3852 . . . . . . 7 (𝑐 = (𝐸𝑄) → ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄)))
65 sseq2 3852 . . . . . . . . . . . . 13 (𝑐 = (𝐸𝑄) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄)))
6665anbi1d 625 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
67 eleq2 2895 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑝) ∈ (𝐸𝑄)))
6866, 67imbi12d 336 . . . . . . . . . . 11 (𝑐 = (𝐸𝑄) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6968ralbidv 3195 . . . . . . . . . 10 (𝑐 = (𝐸𝑄) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
7069imbi2d 332 . . . . . . . . 9 (𝑐 = (𝐸𝑄) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7170albidv 2021 . . . . . . . 8 (𝑐 = (𝐸𝑄) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
72712albidv 2024 . . . . . . 7 (𝑐 = (𝐸𝑄) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7364, 72anbi12d 626 . . . . . 6 (𝑐 = (𝐸𝑄) → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))))
7463, 73elab 3571 . . . . 5 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7525, 61, 74sylanbrc 580 . . . 4 (𝜑 → (𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
76 intss1 4712 . . . 4 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7775, 76syl 17 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7877, 27syl6ss 3839 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑄)
7911, 78eqsstrd 3864 1 (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1113  ∀wal 1656   = wceq 1658   ∈ wcel 2166  {cab 2811  ∀wral 3117   ∪ cun 3796   ∩ cin 3797   ⊆ wss 3798  ⟨cotp 4405  ∩ cint 4697   class class class wbr 4873   × cxp 5340  ◡ccnv 5341  ran crn 5343   “ cima 5345   Fn wfn 6118  ⟶wf 6119  ‘cfv 6123  (class class class)co 6905   ↑𝑚 cmap 8122   ↑pm cpm 8123  Fincfn 8222  mVRcmvar 31904  mAxcmax 31908  mRExcmrex 31909  mExcmex 31910  mDVcmdv 31911  mVarscmvrs 31912  mSubstcmsub 31914  mVHcmvh 31915  mPreStcmpst 31916  mStatcmsta 31918  mFScmfs 31919  mClscmcls 31920 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-gsum 16456  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-frmd 17740  df-mrex 31929  df-mex 31930  df-mrsub 31933  df-msub 31934  df-mvh 31935  df-mpst 31936  df-msr 31937  df-msta 31938  df-mfs 31939  df-mcls 31940 This theorem is referenced by:  mclspps  32027
 Copyright terms: Public domain W3C validator