Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsind Structured version   Visualization version   GIF version

Theorem mclsind 32930
Description: Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsind.4 (𝜑𝐵𝑄)
mclsind.5 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
mclsind.6 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
Assertion
Ref Expression
mclsind (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑥,𝑚,𝐻,𝑜,𝑝,𝑠,𝑣   𝑦,𝑚,𝐵,𝑜,𝑝,𝑠,𝑣,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥   𝑚,𝐿,𝑜,𝑝,𝑠,𝑥,𝑦   𝐴,𝑚,𝑜,𝑝,𝑠   𝑇,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑄,𝑚,𝑜,𝑝,𝑠,𝑣   𝑣,𝑉,𝑥   𝑚,𝑊,𝑜,𝑝,𝑠,𝑥   𝑚,𝐾,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣)   𝐶(𝑦)   𝐷(𝑥,𝑦,𝑣,𝑚,𝑜,𝑠,𝑝)   𝑄(𝑥,𝑦)   𝑇(𝑣)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝐿(𝑣)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)   𝑊(𝑦,𝑣)

Proof of Theorem mclsind
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mclsval.d . . 3 𝐷 = (mDV‘𝑇)
2 mclsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
4 mclsval.1 . . 3 (𝜑𝑇 ∈ mFS)
5 mclsval.2 . . 3 (𝜑𝐾𝐷)
6 mclsval.3 . . 3 (𝜑𝐵𝐸)
7 mclsax.h . . 3 𝐻 = (mVH‘𝑇)
8 mclsax.a . . 3 𝐴 = (mAx‘𝑇)
9 mclsax.l . . 3 𝐿 = (mSubst‘𝑇)
10 mclsax.w . . 3 𝑊 = (mVars‘𝑇)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mclsval 32923 . 2 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
12 mclsind.4 . . . . . . 7 (𝜑𝐵𝑄)
136, 12ssind 4159 . . . . . 6 (𝜑𝐵 ⊆ (𝐸𝑄))
14 mclsax.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
1514, 2, 7mvhf 32918 . . . . . . . . . 10 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
164, 15syl 17 . . . . . . . . 9 (𝜑𝐻:𝑉𝐸)
1716ffnd 6488 . . . . . . . 8 (𝜑𝐻 Fn 𝑉)
1816ffvelrnda 6828 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝐸)
19 mclsind.5 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
2018, 19elind 4121 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ (𝐸𝑄))
2120ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄))
22 ffnfv 6859 . . . . . . . 8 (𝐻:𝑉⟶(𝐸𝑄) ↔ (𝐻 Fn 𝑉 ∧ ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄)))
2317, 21, 22sylanbrc 586 . . . . . . 7 (𝜑𝐻:𝑉⟶(𝐸𝑄))
2423frnd 6494 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (𝐸𝑄))
2513, 24unssd 4113 . . . . 5 (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄))
26 id 22 . . . . . . . . . . . 12 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄))
27 inss2 4156 . . . . . . . . . . . 12 (𝐸𝑄) ⊆ 𝑄
2826, 27sstrdi 3927 . . . . . . . . . . 11 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)
294adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑇 ∈ mFS)
30 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (mREx‘𝑇) = (mREx‘𝑇)
3114, 30, 9, 2msubff 32890 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ mFS → 𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸m 𝐸))
32 frn 6493 . . . . . . . . . . . . . . . . . . . 20 (𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸m 𝐸) → ran 𝐿 ⊆ (𝐸m 𝐸))
3329, 31, 323syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ran 𝐿 ⊆ (𝐸m 𝐸))
34 simpr2 1192 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ ran 𝐿)
3533, 34sseldd 3916 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ (𝐸m 𝐸))
36 elmapi 8411 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝐸m 𝐸) → 𝑠:𝐸𝐸)
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠:𝐸𝐸)
38 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (mStat‘𝑇) = (mStat‘𝑇)
398, 38maxsta 32914 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
4029, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mStat‘𝑇))
41 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (mPreSt‘𝑇) = (mPreSt‘𝑇)
4241, 38mstapst 32907 . . . . . . . . . . . . . . . . . . . 20 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
4340, 42sstrdi 3927 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mPreSt‘𝑇))
44 simpr1 1191 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴)
4543, 44sseldd 3916 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
461, 2, 41elmpst 32896 . . . . . . . . . . . . . . . . . . 19 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
4746simp3bi 1144 . . . . . . . . . . . . . . . . . 18 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → 𝑝𝐸)
4845, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑝𝐸)
4937, 48ffvelrnd 6829 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → (𝑠𝑝) ∈ 𝐸)
50493adant3 1129 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝐸)
51 mclsind.6 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
5250, 51elind 4121 . . . . . . . . . . . . . 14 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))
53523exp 1116 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
54533expd 1350 . . . . . . . . . . . 12 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → (𝑠 ∈ ran 𝐿 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))))
5554imp31 421 . . . . . . . . . . 11 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5628, 55syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5756impd 414 . . . . . . . . 9 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5857ralrimiva 3149 . . . . . . . 8 ((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
5958ex 416 . . . . . . 7 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6059alrimiv 1928 . . . . . 6 (𝜑 → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6160alrimivv 1929 . . . . 5 (𝜑 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
622fvexi 6659 . . . . . . 7 𝐸 ∈ V
6362inex1 5185 . . . . . 6 (𝐸𝑄) ∈ V
64 sseq2 3941 . . . . . . 7 (𝑐 = (𝐸𝑄) → ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄)))
65 sseq2 3941 . . . . . . . . . . . . 13 (𝑐 = (𝐸𝑄) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄)))
6665anbi1d 632 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
67 eleq2 2878 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑝) ∈ (𝐸𝑄)))
6866, 67imbi12d 348 . . . . . . . . . . 11 (𝑐 = (𝐸𝑄) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6968ralbidv 3162 . . . . . . . . . 10 (𝑐 = (𝐸𝑄) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
7069imbi2d 344 . . . . . . . . 9 (𝑐 = (𝐸𝑄) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7170albidv 1921 . . . . . . . 8 (𝑐 = (𝐸𝑄) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
72712albidv 1924 . . . . . . 7 (𝑐 = (𝐸𝑄) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7364, 72anbi12d 633 . . . . . 6 (𝑐 = (𝐸𝑄) → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))))
7463, 73elab 3615 . . . . 5 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7525, 61, 74sylanbrc 586 . . . 4 (𝜑 → (𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
76 intss1 4853 . . . 4 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7775, 76syl 17 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
7877, 27sstrdi 3927 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑄)
7911, 78eqsstrd 3953 1 (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wral 3106  cun 3879  cin 3880  wss 3881  cotp 4533   cint 4838   class class class wbr 5030   × cxp 5517  ccnv 5518  ran crn 5520  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  pm cpm 8390  Fincfn 8492  mVRcmvar 32821  mAxcmax 32825  mRExcmrex 32826  mExcmex 32827  mDVcmdv 32828  mVarscmvrs 32829  mSubstcmsub 32831  mVHcmvh 32832  mPreStcmpst 32833  mStatcmsta 32835  mFScmfs 32836  mClscmcls 32837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-frmd 18006  df-mrex 32846  df-mex 32847  df-mrsub 32850  df-msub 32851  df-mvh 32852  df-mpst 32853  df-msr 32854  df-msta 32855  df-mfs 32856  df-mcls 32857
This theorem is referenced by:  mclspps  32944
  Copyright terms: Public domain W3C validator