| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mppspst | Structured version Visualization version GIF version | ||
| Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mppsval.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| mppsval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| Ref | Expression |
|---|---|
| mppspst | ⊢ 𝐽 ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mppsval.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | mppsval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 3 | eqid 2729 | . . 3 ⊢ (mCls‘𝑇) = (mCls‘𝑇) | |
| 4 | 1, 2, 3 | mppsval 35544 | . 2 ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} |
| 5 | 1, 2, 3 | mppspstlem 35543 | . 2 ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} ⊆ 𝑃 |
| 6 | 4, 5 | eqsstri 3984 | 1 ⊢ 𝐽 ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 〈cotp 4587 ‘cfv 6486 (class class class)co 7353 {coprab 7354 mPreStcmpst 35445 mClscmcls 35449 mPPStcmpps 35450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpps 35470 |
| This theorem is referenced by: elmthm 35548 mthmpps 35554 mclspps 35556 |
| Copyright terms: Public domain | W3C validator |