| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mppspst | Structured version Visualization version GIF version | ||
| Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mppsval.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| mppsval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| Ref | Expression |
|---|---|
| mppspst | ⊢ 𝐽 ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mppsval.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | mppsval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 3 | eqid 2731 | . . 3 ⊢ (mCls‘𝑇) = (mCls‘𝑇) | |
| 4 | 1, 2, 3 | mppsval 35604 | . 2 ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} |
| 5 | 1, 2, 3 | mppspstlem 35603 | . 2 ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} ⊆ 𝑃 |
| 6 | 4, 5 | eqsstri 3981 | 1 ⊢ 𝐽 ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 〈cotp 4584 ‘cfv 6481 (class class class)co 7346 {coprab 7347 mPreStcmpst 35505 mClscmcls 35509 mPPStcmpps 35510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpps 35530 |
| This theorem is referenced by: elmthm 35608 mthmpps 35614 mclspps 35616 |
| Copyright terms: Public domain | W3C validator |