| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mppspst | Structured version Visualization version GIF version | ||
| Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mppsval.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| mppsval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| Ref | Expression |
|---|---|
| mppspst | ⊢ 𝐽 ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mppsval.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | mppsval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 3 | eqid 2734 | . . 3 ⊢ (mCls‘𝑇) = (mCls‘𝑇) | |
| 4 | 1, 2, 3 | mppsval 35536 | . 2 ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} |
| 5 | 1, 2, 3 | mppspstlem 35535 | . 2 ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} ⊆ 𝑃 |
| 6 | 4, 5 | eqsstri 4010 | 1 ⊢ 𝐽 ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 〈cotp 4614 ‘cfv 6541 (class class class)co 7413 {coprab 7414 mPreStcmpst 35437 mClscmcls 35441 mPPStcmpps 35442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpps 35462 |
| This theorem is referenced by: elmthm 35540 mthmpps 35546 mclspps 35548 |
| Copyright terms: Public domain | W3C validator |