Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mppspst Structured version   Visualization version   GIF version

Theorem mppspst 34851
Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreStβ€˜π‘‡)
mppsval.j 𝐽 = (mPPStβ€˜π‘‡)
Assertion
Ref Expression
mppspst 𝐽 βŠ† 𝑃

Proof of Theorem mppspst
Dummy variables π‘Ž 𝑑 β„Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mppsval.p . . 3 𝑃 = (mPreStβ€˜π‘‡)
2 mppsval.j . . 3 𝐽 = (mPPStβ€˜π‘‡)
3 eqid 2732 . . 3 (mClsβ€˜π‘‡) = (mClsβ€˜π‘‡)
41, 2, 3mppsval 34849 . 2 𝐽 = {βŸ¨βŸ¨π‘‘, β„ŽβŸ©, π‘ŽβŸ© ∣ (βŸ¨π‘‘, β„Ž, π‘ŽβŸ© ∈ 𝑃 ∧ π‘Ž ∈ (𝑑(mClsβ€˜π‘‡)β„Ž))}
51, 2, 3mppspstlem 34848 . 2 {βŸ¨βŸ¨π‘‘, β„ŽβŸ©, π‘ŽβŸ© ∣ (βŸ¨π‘‘, β„Ž, π‘ŽβŸ© ∈ 𝑃 ∧ π‘Ž ∈ (𝑑(mClsβ€˜π‘‡)β„Ž))} βŠ† 𝑃
64, 5eqsstri 4016 1 𝐽 βŠ† 𝑃
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  βŸ¨cotp 4636  β€˜cfv 6543  (class class class)co 7411  {coprab 7412  mPreStcmpst 34750  mClscmcls 34754  mPPStcmpps 34755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpps 34775
This theorem is referenced by:  elmthm  34853  mthmpps  34859  mclspps  34861
  Copyright terms: Public domain W3C validator