Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mppspst Structured version   Visualization version   GIF version

Theorem mppspst 35639
Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreSt‘𝑇)
mppsval.j 𝐽 = (mPPSt‘𝑇)
Assertion
Ref Expression
mppspst 𝐽𝑃

Proof of Theorem mppspst
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mppsval.p . . 3 𝑃 = (mPreSt‘𝑇)
2 mppsval.j . . 3 𝐽 = (mPPSt‘𝑇)
3 eqid 2733 . . 3 (mCls‘𝑇) = (mCls‘𝑇)
41, 2, 3mppsval 35637 . 2 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑(mCls‘𝑇)))}
51, 2, 3mppspstlem 35636 . 2 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑(mCls‘𝑇)))} ⊆ 𝑃
64, 5eqsstri 3977 1 𝐽𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  wss 3898  cotp 4583  cfv 6486  (class class class)co 7352  {coprab 7353  mPreStcmpst 35538  mClscmcls 35542  mPPStcmpps 35543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-ot 4584  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpps 35563
This theorem is referenced by:  elmthm  35641  mthmpps  35647  mclspps  35649
  Copyright terms: Public domain W3C validator