Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mppspst Structured version   Visualization version   GIF version

Theorem mppspst 35542
Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreSt‘𝑇)
mppsval.j 𝐽 = (mPPSt‘𝑇)
Assertion
Ref Expression
mppspst 𝐽𝑃

Proof of Theorem mppspst
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mppsval.p . . 3 𝑃 = (mPreSt‘𝑇)
2 mppsval.j . . 3 𝐽 = (mPPSt‘𝑇)
3 eqid 2740 . . 3 (mCls‘𝑇) = (mCls‘𝑇)
41, 2, 3mppsval 35540 . 2 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑(mCls‘𝑇)))}
51, 2, 3mppspstlem 35539 . 2 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑(mCls‘𝑇)))} ⊆ 𝑃
64, 5eqsstri 4043 1 𝐽𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wss 3976  cotp 4656  cfv 6573  (class class class)co 7448  {coprab 7449  mPreStcmpst 35441  mClscmcls 35445  mPPStcmpps 35446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpps 35466
This theorem is referenced by:  elmthm  35544  mthmpps  35550  mclspps  35552
  Copyright terms: Public domain W3C validator