| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mppspst | Structured version Visualization version GIF version | ||
| Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mppsval.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| mppsval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| Ref | Expression |
|---|---|
| mppspst | ⊢ 𝐽 ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mppsval.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | mppsval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 3 | eqid 2733 | . . 3 ⊢ (mCls‘𝑇) = (mCls‘𝑇) | |
| 4 | 1, 2, 3 | mppsval 35637 | . 2 ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} |
| 5 | 1, 2, 3 | mppspstlem 35636 | . 2 ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} ⊆ 𝑃 |
| 6 | 4, 5 | eqsstri 3977 | 1 ⊢ 𝐽 ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 〈cotp 4583 ‘cfv 6486 (class class class)co 7352 {coprab 7353 mPreStcmpst 35538 mClscmcls 35542 mPPStcmpps 35543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-ot 4584 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpps 35563 |
| This theorem is referenced by: elmthm 35641 mthmpps 35647 mclspps 35649 |
| Copyright terms: Public domain | W3C validator |