Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mppspst Structured version   Visualization version   GIF version

Theorem mppspst 35606
Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreSt‘𝑇)
mppsval.j 𝐽 = (mPPSt‘𝑇)
Assertion
Ref Expression
mppspst 𝐽𝑃

Proof of Theorem mppspst
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mppsval.p . . 3 𝑃 = (mPreSt‘𝑇)
2 mppsval.j . . 3 𝐽 = (mPPSt‘𝑇)
3 eqid 2731 . . 3 (mCls‘𝑇) = (mCls‘𝑇)
41, 2, 3mppsval 35604 . 2 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑(mCls‘𝑇)))}
51, 2, 3mppspstlem 35603 . 2 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑(mCls‘𝑇)))} ⊆ 𝑃
64, 5eqsstri 3981 1 𝐽𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wss 3902  cotp 4584  cfv 6481  (class class class)co 7346  {coprab 7347  mPreStcmpst 35505  mClscmcls 35509  mPPStcmpps 35510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-ot 4585  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpps 35530
This theorem is referenced by:  elmthm  35608  mthmpps  35614  mclspps  35616
  Copyright terms: Public domain W3C validator