![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mppspst | Structured version Visualization version GIF version |
Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mppsval.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
mppsval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
Ref | Expression |
---|---|
mppspst | ⊢ 𝐽 ⊆ 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mppsval.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | mppsval.j | . . 3 ⊢ 𝐽 = (mPPSt‘𝑇) | |
3 | eqid 2740 | . . 3 ⊢ (mCls‘𝑇) = (mCls‘𝑇) | |
4 | 1, 2, 3 | mppsval 35540 | . 2 ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} |
5 | 1, 2, 3 | mppspstlem 35539 | . 2 ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑(mCls‘𝑇)ℎ))} ⊆ 𝑃 |
6 | 4, 5 | eqsstri 4043 | 1 ⊢ 𝐽 ⊆ 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 〈cotp 4656 ‘cfv 6573 (class class class)co 7448 {coprab 7449 mPreStcmpst 35441 mClscmcls 35445 mPPStcmpps 35446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpps 35466 |
This theorem is referenced by: elmthm 35544 mthmpps 35550 mclspps 35552 |
Copyright terms: Public domain | W3C validator |