Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mppsval Structured version   Visualization version   GIF version

Theorem mppsval 35584
Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreSt‘𝑇)
mppsval.j 𝐽 = (mPPSt‘𝑇)
mppsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
mppsval 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))}
Distinct variable groups:   𝑎,𝑑,,𝐶   𝑃,𝑎,𝑑,   𝑇,𝑎,𝑑,
Allowed substitution hints:   𝐽(,𝑎,𝑑)

Proof of Theorem mppsval
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mppsval.j . 2 𝐽 = (mPPSt‘𝑇)
2 fveq2 6817 . . . . . . . 8 (𝑡 = 𝑇 → (mPreSt‘𝑡) = (mPreSt‘𝑇))
3 mppsval.p . . . . . . . 8 𝑃 = (mPreSt‘𝑇)
42, 3eqtr4di 2783 . . . . . . 7 (𝑡 = 𝑇 → (mPreSt‘𝑡) = 𝑃)
54eleq2d 2815 . . . . . 6 (𝑡 = 𝑇 → (⟨𝑑, , 𝑎⟩ ∈ (mPreSt‘𝑡) ↔ ⟨𝑑, , 𝑎⟩ ∈ 𝑃))
6 fveq2 6817 . . . . . . . . 9 (𝑡 = 𝑇 → (mCls‘𝑡) = (mCls‘𝑇))
7 mppsval.c . . . . . . . . 9 𝐶 = (mCls‘𝑇)
86, 7eqtr4di 2783 . . . . . . . 8 (𝑡 = 𝑇 → (mCls‘𝑡) = 𝐶)
98oveqd 7358 . . . . . . 7 (𝑡 = 𝑇 → (𝑑(mCls‘𝑡)) = (𝑑𝐶))
109eleq2d 2815 . . . . . 6 (𝑡 = 𝑇 → (𝑎 ∈ (𝑑(mCls‘𝑡)) ↔ 𝑎 ∈ (𝑑𝐶)))
115, 10anbi12d 632 . . . . 5 (𝑡 = 𝑇 → ((⟨𝑑, , 𝑎⟩ ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡))) ↔ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))))
1211oprabbidv 7407 . . . 4 (𝑡 = 𝑇 → {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)))} = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))})
13 df-mpps 35510 . . . 4 mPPSt = (𝑡 ∈ V ↦ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)))})
143fvexi 6831 . . . . 5 𝑃 ∈ V
153, 1, 7mppspstlem 35583 . . . . 5 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ⊆ 𝑃
1614, 15ssexi 5258 . . . 4 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ∈ V
1712, 13, 16fvmpt 6924 . . 3 (𝑇 ∈ V → (mPPSt‘𝑇) = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))})
18 fvprc 6809 . . . 4 𝑇 ∈ V → (mPPSt‘𝑇) = ∅)
19 df-oprab 7345 . . . . 5 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} = {𝑥 ∣ ∃𝑑𝑎(𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶)))}
20 abn0 4333 . . . . . . 7 ({𝑥 ∣ ∃𝑑𝑎(𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶)))} ≠ ∅ ↔ ∃𝑥𝑑𝑎(𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))))
21 elfvex 6852 . . . . . . . . . . 11 (⟨𝑑, , 𝑎⟩ ∈ (mPreSt‘𝑇) → 𝑇 ∈ V)
2221, 3eleq2s 2847 . . . . . . . . . 10 (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑇 ∈ V)
2322ad2antrl 728 . . . . . . . . 9 ((𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))) → 𝑇 ∈ V)
2423exlimivv 1933 . . . . . . . 8 (∃𝑎(𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))) → 𝑇 ∈ V)
2524exlimivv 1933 . . . . . . 7 (∃𝑥𝑑𝑎(𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))) → 𝑇 ∈ V)
2620, 25sylbi 217 . . . . . 6 ({𝑥 ∣ ∃𝑑𝑎(𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶)))} ≠ ∅ → 𝑇 ∈ V)
2726necon1bi 2954 . . . . 5 𝑇 ∈ V → {𝑥 ∣ ∃𝑑𝑎(𝑥 = ⟨⟨𝑑, ⟩, 𝑎⟩ ∧ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶)))} = ∅)
2819, 27eqtrid 2777 . . . 4 𝑇 ∈ V → {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} = ∅)
2918, 28eqtr4d 2768 . . 3 𝑇 ∈ V → (mPPSt‘𝑇) = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))})
3017, 29pm2.61i 182 . 2 (mPPSt‘𝑇) = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))}
311, 30eqtri 2753 1 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wex 1780  wcel 2110  {cab 2708  wne 2926  Vcvv 3434  c0 4281  cop 4580  cotp 4582  cfv 6477  (class class class)co 7341  {coprab 7342  mPreStcmpst 35485  mClscmcls 35489  mPPStcmpps 35490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-ot 4583  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpps 35510
This theorem is referenced by:  elmpps  35585  mppspst  35586
  Copyright terms: Public domain W3C validator