| Step | Hyp | Ref
| Expression |
| 1 | | mppsval.j |
. 2
⊢ 𝐽 = (mPPSt‘𝑇) |
| 2 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (mPreSt‘𝑡) = (mPreSt‘𝑇)) |
| 3 | | mppsval.p |
. . . . . . . 8
⊢ 𝑃 = (mPreSt‘𝑇) |
| 4 | 2, 3 | eqtr4di 2795 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (mPreSt‘𝑡) = 𝑃) |
| 5 | 4 | eleq2d 2827 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ↔ 〈𝑑, ℎ, 𝑎〉 ∈ 𝑃)) |
| 6 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (mCls‘𝑡) = (mCls‘𝑇)) |
| 7 | | mppsval.c |
. . . . . . . . 9
⊢ 𝐶 = (mCls‘𝑇) |
| 8 | 6, 7 | eqtr4di 2795 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (mCls‘𝑡) = 𝐶) |
| 9 | 8 | oveqd 7448 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (𝑑(mCls‘𝑡)ℎ) = (𝑑𝐶ℎ)) |
| 10 | 9 | eleq2d 2827 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝑎 ∈ (𝑑(mCls‘𝑡)ℎ) ↔ 𝑎 ∈ (𝑑𝐶ℎ))) |
| 11 | 5, 10 | anbi12d 632 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ)) ↔ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))) |
| 12 | 11 | oprabbidv 7499 |
. . . 4
⊢ (𝑡 = 𝑇 → {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))} = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))}) |
| 13 | | df-mpps 35503 |
. . . 4
⊢ mPPSt =
(𝑡 ∈ V ↦
{〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) |
| 14 | 3 | fvexi 6920 |
. . . . 5
⊢ 𝑃 ∈ V |
| 15 | 3, 1, 7 | mppspstlem 35576 |
. . . . 5
⊢
{〈〈𝑑,
ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ⊆ 𝑃 |
| 16 | 14, 15 | ssexi 5322 |
. . . 4
⊢
{〈〈𝑑,
ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ∈ V |
| 17 | 12, 13, 16 | fvmpt 7016 |
. . 3
⊢ (𝑇 ∈ V →
(mPPSt‘𝑇) =
{〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))}) |
| 18 | | fvprc 6898 |
. . . 4
⊢ (¬
𝑇 ∈ V →
(mPPSt‘𝑇) =
∅) |
| 19 | | df-oprab 7435 |
. . . . 5
⊢
{〈〈𝑑,
ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} = {𝑥 ∣ ∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))} |
| 20 | | abn0 4385 |
. . . . . . 7
⊢ ({𝑥 ∣ ∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))} ≠ ∅ ↔ ∃𝑥∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))) |
| 21 | | elfvex 6944 |
. . . . . . . . . . 11
⊢
(〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑇) → 𝑇 ∈ V) |
| 22 | 21, 3 | eleq2s 2859 |
. . . . . . . . . 10
⊢
(〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 → 𝑇 ∈ V) |
| 23 | 22 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))) → 𝑇 ∈ V) |
| 24 | 23 | exlimivv 1932 |
. . . . . . . 8
⊢
(∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))) → 𝑇 ∈ V) |
| 25 | 24 | exlimivv 1932 |
. . . . . . 7
⊢
(∃𝑥∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))) → 𝑇 ∈ V) |
| 26 | 20, 25 | sylbi 217 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))} ≠ ∅ → 𝑇 ∈ V) |
| 27 | 26 | necon1bi 2969 |
. . . . 5
⊢ (¬
𝑇 ∈ V → {𝑥 ∣ ∃𝑑∃ℎ∃𝑎(𝑥 = 〈〈𝑑, ℎ〉, 𝑎〉 ∧ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ)))} = ∅) |
| 28 | 19, 27 | eqtrid 2789 |
. . . 4
⊢ (¬
𝑇 ∈ V →
{〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} = ∅) |
| 29 | 18, 28 | eqtr4d 2780 |
. . 3
⊢ (¬
𝑇 ∈ V →
(mPPSt‘𝑇) =
{〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))}) |
| 30 | 17, 29 | pm2.61i 182 |
. 2
⊢
(mPPSt‘𝑇) =
{〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} |
| 31 | 1, 30 | eqtri 2765 |
1
⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} |