![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version |
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cotp 4638 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
5 | 1, 2 | cop 4636 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cop 4636 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
7 | 4, 6 | wceq 1536 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Colors of variables: wff setvar class |
This definition is referenced by: oteq1 4886 oteq2 4887 oteq3 4888 otex 5475 otth 5494 otthg 5495 otelxp 5732 otel3xp 5734 fnotovb 7482 ot1stg 8026 ot2ndg 8027 ot3rdg 8028 el2xptp 8058 el2xptp0 8059 frxp3 8174 ottpos 8259 wunot 10760 elhomai2 18087 homadmcd 18095 elmpst 35520 mpst123 35524 mpstrcl 35525 mppspstlem 35555 elmpps 35557 hdmap1val 41780 fnotaovb 47147 mndtchom 48892 mndtcco 48893 |
Copyright terms: Public domain | W3C validator |