Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version |
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cotp 4566 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
5 | 1, 2 | cop 4564 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cop 4564 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
7 | 4, 6 | wceq 1539 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Colors of variables: wff setvar class |
This definition is referenced by: oteq1 4810 oteq2 4811 oteq3 4812 otex 5374 otth 5393 otthg 5394 otel3xp 5624 fnotovb 7305 ot1stg 7818 ot2ndg 7819 ot3rdg 7820 el2xptp 7850 el2xptp0 7851 ottpos 8023 wunot 10410 elhomai2 17665 homadmcd 17673 elmpst 33398 mpst123 33402 mpstrcl 33403 mppspstlem 33433 elmpps 33435 hdmap1val 39739 fnotaovb 44577 mndtchom 46257 mndtcco 46258 |
Copyright terms: Public domain | W3C validator |