MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ot Structured version   Visualization version   GIF version

Definition df-ot 4588
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
df-ot 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶

Detailed syntax breakdown of Definition df-ot
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
41, 2, 3cotp 4587 . 2 class 𝐴, 𝐵, 𝐶
51, 2cop 4585 . . 3 class 𝐴, 𝐵
65, 3cop 4585 . 2 class ⟨⟨𝐴, 𝐵⟩, 𝐶
74, 6wceq 1540 1 wff 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
Colors of variables: wff setvar class
This definition is referenced by:  oteq1  4836  oteq2  4837  oteq3  4838  otex  5412  otth  5431  otthg  5432  otelxp  5667  otel3xp  5669  fnotovb  7405  ot1stg  7945  ot2ndg  7946  ot3rdg  7947  el2xptp  7977  el2xptp0  7978  frxp3  8091  ottpos  8176  wunot  10636  elhomai2  17959  homadmcd  17967  elmpst  35508  mpst123  35512  mpstrcl  35513  mppspstlem  35543  elmpps  35545  hdmap1val  41777  fnotaovb  47183  ovsng2  48844  setc1ohomfval  49479  setc1ocofval  49480  mndtcco  49571
  Copyright terms: Public domain W3C validator