| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version | ||
| Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cotp 4584 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
| 5 | 1, 2 | cop 4582 | . . 3 class 〈𝐴, 𝐵〉 |
| 6 | 5, 3 | cop 4582 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
| 7 | 4, 6 | wceq 1541 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Colors of variables: wff setvar class |
| This definition is referenced by: oteq1 4834 oteq2 4835 oteq3 4836 otex 5405 otth 5424 otthg 5425 otelxp 5660 otel3xp 5662 fnotovb 7398 ot1stg 7935 ot2ndg 7936 ot3rdg 7937 el2xptp 7967 el2xptp0 7968 frxp3 8081 ottpos 8166 wunot 10611 elhomai2 17938 homadmcd 17946 elmpst 35568 mpst123 35572 mpstrcl 35573 mppspstlem 35603 elmpps 35605 hdmap1val 41836 fnotaovb 47228 ovsng2 48889 setc1ohomfval 49524 setc1ocofval 49525 mndtcco 49616 |
| Copyright terms: Public domain | W3C validator |