Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version |
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cotp 4569 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
5 | 1, 2 | cop 4567 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cop 4567 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
7 | 4, 6 | wceq 1539 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Colors of variables: wff setvar class |
This definition is referenced by: oteq1 4813 oteq2 4814 oteq3 4815 otex 5380 otth 5399 otthg 5400 otel3xp 5633 fnotovb 7325 ot1stg 7845 ot2ndg 7846 ot3rdg 7847 el2xptp 7877 el2xptp0 7878 ottpos 8052 wunot 10479 elhomai2 17749 homadmcd 17757 elmpst 33498 mpst123 33502 mpstrcl 33503 mppspstlem 33533 elmpps 33535 hdmap1val 39812 fnotaovb 44690 mndtchom 46371 mndtcco 46372 |
Copyright terms: Public domain | W3C validator |