MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ot Structured version   Visualization version   GIF version

Definition df-ot 4639
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
df-ot 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶

Detailed syntax breakdown of Definition df-ot
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
41, 2, 3cotp 4638 . 2 class 𝐴, 𝐵, 𝐶
51, 2cop 4636 . . 3 class 𝐴, 𝐵
65, 3cop 4636 . 2 class ⟨⟨𝐴, 𝐵⟩, 𝐶
74, 6wceq 1536 1 wff 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
Colors of variables: wff setvar class
This definition is referenced by:  oteq1  4886  oteq2  4887  oteq3  4888  otex  5475  otth  5494  otthg  5495  otelxp  5732  otel3xp  5734  fnotovb  7482  ot1stg  8026  ot2ndg  8027  ot3rdg  8028  el2xptp  8058  el2xptp0  8059  frxp3  8174  ottpos  8259  wunot  10760  elhomai2  18087  homadmcd  18095  elmpst  35520  mpst123  35524  mpstrcl  35525  mppspstlem  35555  elmpps  35557  hdmap1val  41780  fnotaovb  47147  mndtchom  48892  mndtcco  48893
  Copyright terms: Public domain W3C validator