MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ot Structured version   Visualization version   GIF version

Definition df-ot 4570
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
df-ot 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶

Detailed syntax breakdown of Definition df-ot
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
41, 2, 3cotp 4569 . 2 class 𝐴, 𝐵, 𝐶
51, 2cop 4567 . . 3 class 𝐴, 𝐵
65, 3cop 4567 . 2 class ⟨⟨𝐴, 𝐵⟩, 𝐶
74, 6wceq 1539 1 wff 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
Colors of variables: wff setvar class
This definition is referenced by:  oteq1  4813  oteq2  4814  oteq3  4815  otex  5380  otth  5399  otthg  5400  otel3xp  5633  fnotovb  7325  ot1stg  7845  ot2ndg  7846  ot3rdg  7847  el2xptp  7877  el2xptp0  7878  ottpos  8052  wunot  10479  elhomai2  17749  homadmcd  17757  elmpst  33498  mpst123  33502  mpstrcl  33503  mppspstlem  33533  elmpps  33535  hdmap1val  39812  fnotaovb  44690  mndtchom  46371  mndtcco  46372
  Copyright terms: Public domain W3C validator