| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version | ||
| Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cotp 4587 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
| 5 | 1, 2 | cop 4585 | . . 3 class 〈𝐴, 𝐵〉 |
| 6 | 5, 3 | cop 4585 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
| 7 | 4, 6 | wceq 1540 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Colors of variables: wff setvar class |
| This definition is referenced by: oteq1 4836 oteq2 4837 oteq3 4838 otex 5412 otth 5431 otthg 5432 otelxp 5667 otel3xp 5669 fnotovb 7405 ot1stg 7945 ot2ndg 7946 ot3rdg 7947 el2xptp 7977 el2xptp0 7978 frxp3 8091 ottpos 8176 wunot 10636 elhomai2 17959 homadmcd 17967 elmpst 35508 mpst123 35512 mpstrcl 35513 mppspstlem 35543 elmpps 35545 hdmap1val 41777 fnotaovb 47183 ovsng2 48844 setc1ohomfval 49479 setc1ocofval 49480 mndtcco 49571 |
| Copyright terms: Public domain | W3C validator |