![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version |
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cotp 4656 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
5 | 1, 2 | cop 4654 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cop 4654 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
7 | 4, 6 | wceq 1537 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Colors of variables: wff setvar class |
This definition is referenced by: oteq1 4906 oteq2 4907 oteq3 4908 otex 5485 otth 5504 otthg 5505 otelxp 5744 otel3xp 5746 fnotovb 7500 ot1stg 8044 ot2ndg 8045 ot3rdg 8046 el2xptp 8076 el2xptp0 8077 frxp3 8192 ottpos 8277 wunot 10792 elhomai2 18101 homadmcd 18109 elmpst 35504 mpst123 35508 mpstrcl 35509 mppspstlem 35539 elmpps 35541 hdmap1val 41755 fnotaovb 47113 mndtchom 48757 mndtcco 48758 |
Copyright terms: Public domain | W3C validator |