| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version | ||
| Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cotp 4600 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
| 5 | 1, 2 | cop 4598 | . . 3 class 〈𝐴, 𝐵〉 |
| 6 | 5, 3 | cop 4598 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
| 7 | 4, 6 | wceq 1540 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Colors of variables: wff setvar class |
| This definition is referenced by: oteq1 4849 oteq2 4850 oteq3 4851 otex 5428 otth 5447 otthg 5448 otelxp 5685 otel3xp 5687 fnotovb 7442 ot1stg 7985 ot2ndg 7986 ot3rdg 7987 el2xptp 8017 el2xptp0 8018 frxp3 8133 ottpos 8218 wunot 10683 elhomai2 18003 homadmcd 18011 elmpst 35530 mpst123 35534 mpstrcl 35535 mppspstlem 35565 elmpps 35567 hdmap1val 41799 fnotaovb 47203 ovsng2 48851 setc1ohomfval 49486 setc1ocofval 49487 mndtcco 49578 |
| Copyright terms: Public domain | W3C validator |