| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version | ||
| Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | cotp 4583 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
| 5 | 1, 2 | cop 4581 | . . 3 class 〈𝐴, 𝐵〉 |
| 6 | 5, 3 | cop 4581 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
| 7 | 4, 6 | wceq 1541 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| Colors of variables: wff setvar class |
| This definition is referenced by: oteq1 4833 oteq2 4834 oteq3 4835 otex 5408 otth 5427 otthg 5428 otelxp 5663 otel3xp 5665 fnotovb 7404 ot1stg 7941 ot2ndg 7942 ot3rdg 7943 el2xptp 7973 el2xptp0 7974 frxp3 8087 ottpos 8172 wunot 10621 elhomai2 17943 homadmcd 17951 elmpst 35601 mpst123 35605 mpstrcl 35606 mppspstlem 35636 elmpps 35638 hdmap1val 41917 fnotaovb 47322 ovsng2 48983 setc1ohomfval 49618 setc1ocofval 49619 mndtcco 49710 |
| Copyright terms: Public domain | W3C validator |