![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version |
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
df-ot | ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cotp 4637 | . 2 class ⟨𝐴, 𝐵, 𝐶⟩ |
5 | 1, 2 | cop 4635 | . . 3 class ⟨𝐴, 𝐵⟩ |
6 | 5, 3 | cop 4635 | . 2 class ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ |
7 | 4, 6 | wceq 1542 | 1 wff ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ |
Colors of variables: wff setvar class |
This definition is referenced by: oteq1 4883 oteq2 4884 oteq3 4885 otex 5466 otth 5485 otthg 5486 otelxp 5721 otel3xp 5723 fnotovb 7459 ot1stg 7989 ot2ndg 7990 ot3rdg 7991 el2xptp 8021 el2xptp0 8022 frxp3 8137 ottpos 8221 wunot 10718 elhomai2 17984 homadmcd 17992 elmpst 34527 mpst123 34531 mpstrcl 34532 mppspstlem 34562 elmpps 34564 hdmap1val 40669 fnotaovb 45906 mndtchom 47710 mndtcco 47711 |
Copyright terms: Public domain | W3C validator |