Step | Hyp | Ref
| Expression |
1 | | smfliminfmpt.g |
. . . 4
β’ πΊ = (π₯ β π· β¦ (lim infβ(π β π β¦ π΅))) |
2 | 1 | a1i 11 |
. . 3
β’ (π β πΊ = (π₯ β π· β¦ (lim infβ(π β π β¦ π΅)))) |
3 | | smfliminfmpt.x |
. . . 4
β’
β²π₯π |
4 | | smfliminfmpt.d |
. . . . . 6
β’ π· = {π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β£ (lim infβ(π β π β¦ π΅)) β β} |
5 | 4 | a1i 11 |
. . . . 5
β’ (π β π· = {π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β£ (lim infβ(π β π β¦ π΅)) β β}) |
6 | | simpr 484 |
. . . . . . . . . 10
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) β π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) |
7 | | smfliminfmpt.n |
. . . . . . . . . . . 12
β’
β²ππ |
8 | | smfliminfmpt.p |
. . . . . . . . . . . . . 14
β’
β²ππ |
9 | | nfv 1909 |
. . . . . . . . . . . . . 14
β’
β²π π β π |
10 | 8, 9 | nfan 1894 |
. . . . . . . . . . . . 13
β’
β²π(π β§ π β π) |
11 | | simpll 764 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π) |
12 | | smfliminfmpt.z |
. . . . . . . . . . . . . . . 16
β’ π =
(β€β₯βπ) |
13 | 12 | uztrn2 12838 |
. . . . . . . . . . . . . . 15
β’ ((π β π β§ π β (β€β₯βπ)) β π β π) |
14 | 13 | adantll 711 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π β π) |
15 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π) β π β π) |
16 | | smfliminfmpt.f |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) |
17 | 16 | elexd 3487 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β V) |
18 | | eqid 2724 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π β¦ (π₯ β π΄ β¦ π΅)) = (π β π β¦ (π₯ β π΄ β¦ π΅)) |
19 | 18 | fvmpt2 6999 |
. . . . . . . . . . . . . . . . 17
β’ ((π β π β§ (π₯ β π΄ β¦ π΅) β V) β ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) = (π₯ β π΄ β¦ π΅)) |
20 | 15, 17, 19 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π) β ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) = (π₯ β π΄ β¦ π΅)) |
21 | 20 | dmeqd 5895 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) = dom (π₯ β π΄ β¦ π΅)) |
22 | | nfv 1909 |
. . . . . . . . . . . . . . . . 17
β’
β²π₯ π β π |
23 | 3, 22 | nfan 1894 |
. . . . . . . . . . . . . . . 16
β’
β²π₯(π β§ π β π) |
24 | | eqid 2724 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅) |
25 | | smfliminfmpt.b |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π β§ π₯ β π΄) β π΅ β π) |
26 | 25 | 3expa 1115 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π) β§ π₯ β π΄) β π΅ β π) |
27 | 23, 24, 26 | dmmptdf 44408 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β dom (π₯ β π΄ β¦ π΅) = π΄) |
28 | 21, 27 | eqtr2d 2765 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β π΄ = dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
29 | 11, 14, 28 | syl2anc 583 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π΄ = dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
30 | 10, 29 | iineq2d 5010 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β β©
π β
(β€β₯βπ)π΄ = β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
31 | 7, 30 | iuneq2df 44221 |
. . . . . . . . . . 11
β’ (π β βͺ π β π β© π β
(β€β₯βπ)π΄ = βͺ π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
32 | 31 | adantr 480 |
. . . . . . . . . 10
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) β βͺ
π β π β© π β
(β€β₯βπ)π΄ = βͺ π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
33 | 6, 32 | eleqtrd 2827 |
. . . . . . . . 9
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) β π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
34 | 33 | adantrr 714 |
. . . . . . . 8
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β)) β π₯ β βͺ π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
35 | | eliun 4991 |
. . . . . . . . . . . . 13
β’ (π₯ β βͺ π β π β© π β
(β€β₯βπ)π΄ β βπ β π π₯ β β©
π β
(β€β₯βπ)π΄) |
36 | 35 | biimpi 215 |
. . . . . . . . . . . 12
β’ (π₯ β βͺ π β π β© π β
(β€β₯βπ)π΄ β βπ β π π₯ β β©
π β
(β€β₯βπ)π΄) |
37 | 36 | adantl 481 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) β βπ β π π₯ β β©
π β
(β€β₯βπ)π΄) |
38 | | nfv 1909 |
. . . . . . . . . . . . 13
β’
β²π(lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β π β¦ π΅)) |
39 | | nfcv 2895 |
. . . . . . . . . . . . . . . . . . 19
β’
β²ππ₯ |
40 | | nfii1 5022 |
. . . . . . . . . . . . . . . . . . 19
β’
β²πβ© π β
(β€β₯βπ)π΄ |
41 | 39, 40 | nfel 2909 |
. . . . . . . . . . . . . . . . . 18
β’
β²π π₯ β β© π β (β€β₯βπ)π΄ |
42 | 8, 9, 41 | nf3an 1896 |
. . . . . . . . . . . . . . . . 17
β’
β²π(π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) |
43 | 20 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π) β (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯) = ((π₯ β π΄ β¦ π΅)βπ₯)) |
44 | 11, 14, 43 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯) = ((π₯ β π΄ β¦ π΅)βπ₯)) |
45 | 44 | 3adantl3 1165 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯) = ((π₯ β π΄ β¦ π΅)βπ₯)) |
46 | | eliinid 44288 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π₯ β β© π β (β€β₯βπ)π΄ β§ π β (β€β₯βπ)) β π₯ β π΄) |
47 | 46 | 3ad2antl3 1184 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β π₯ β π΄) |
48 | | simpl1 1188 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β π) |
49 | | simp2 1134 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β π β π) |
50 | 49, 13 | sylan 579 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β π β π) |
51 | 48, 50, 47, 25 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β π΅ β π) |
52 | 24 | fvmpt2 6999 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π₯ β π΄ β§ π΅ β π) β ((π₯ β π΄ β¦ π΅)βπ₯) = π΅) |
53 | 47, 51, 52 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β ((π₯ β π΄ β¦ π΅)βπ₯) = π΅) |
54 | 45, 53 | eqtrd 2764 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯) = π΅) |
55 | 42, 54 | mpteq2da 5236 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β (π β (β€β₯βπ) β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)) = (π β (β€β₯βπ) β¦ π΅)) |
56 | 55 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β (lim infβ(π β (β€β₯βπ) β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β (β€β₯βπ) β¦ π΅))) |
57 | | nfcv 2895 |
. . . . . . . . . . . . . . . 16
β’
β²ππ |
58 | | nfcv 2895 |
. . . . . . . . . . . . . . . 16
β’
β²π(β€β₯βπ) |
59 | | eqid 2724 |
. . . . . . . . . . . . . . . 16
β’
(β€β₯βπ) = (β€β₯βπ) |
60 | 12 | eluzelz2 44598 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π β π β β€) |
61 | 60 | uzidd 12835 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β π β (β€β₯βπ)) |
62 | 61 | 3ad2ant2 1131 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β π β (β€β₯βπ)) |
63 | | fvexd 6896 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β§ π β (β€β₯βπ)) β (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯) β V) |
64 | 42, 57, 58, 12, 59, 49, 62, 63 | liminfequzmpt2 44992 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β (β€β₯βπ) β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)))) |
65 | 42, 57, 58, 12, 59, 49, 62, 51 | liminfequzmpt2 44992 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β (lim infβ(π β π β¦ π΅)) = (lim infβ(π β (β€β₯βπ) β¦ π΅))) |
66 | 56, 64, 65 | 3eqtr4d 2774 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ π₯ β β©
π β
(β€β₯βπ)π΄) β (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β π β¦ π΅))) |
67 | 66 | 3exp 1116 |
. . . . . . . . . . . . 13
β’ (π β (π β π β (π₯ β β©
π β
(β€β₯βπ)π΄ β (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β π β¦ π΅))))) |
68 | 7, 38, 67 | rexlimd 3255 |
. . . . . . . . . . . 12
β’ (π β (βπ β π π₯ β β©
π β
(β€β₯βπ)π΄ β (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β π β¦ π΅)))) |
69 | 68 | adantr 480 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) β (βπ β π π₯ β β©
π β
(β€β₯βπ)π΄ β (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β π β¦ π΅)))) |
70 | 37, 69 | mpd 15 |
. . . . . . . . . 10
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) β (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β π β¦ π΅))) |
71 | 70 | adantrr 714 |
. . . . . . . . 9
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β)) β (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) = (lim infβ(π β π β¦ π΅))) |
72 | | simprr 770 |
. . . . . . . . 9
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β)) β (lim
infβ(π β π β¦ π΅)) β β) |
73 | 71, 72 | eqeltrd 2825 |
. . . . . . . 8
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β)) β (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) |
74 | 34, 73 | jca 511 |
. . . . . . 7
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β)) β (π₯ β βͺ π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β)) |
75 | | simpl 482 |
. . . . . . . 8
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β)) β π) |
76 | | simpr 484 |
. . . . . . . . . 10
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) β π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) |
77 | 31 | eqcomd 2730 |
. . . . . . . . . . 11
β’ (π β βͺ π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) = βͺ π β π β© π β
(β€β₯βπ)π΄) |
78 | 77 | adantr 480 |
. . . . . . . . . 10
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) = βͺ π β π β© π β
(β€β₯βπ)π΄) |
79 | 76, 78 | eleqtrd 2827 |
. . . . . . . . 9
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)) β π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) |
80 | 79 | adantrr 714 |
. . . . . . . 8
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β)) β π₯ β βͺ π β π β© π β
(β€β₯βπ)π΄) |
81 | | simprr 770 |
. . . . . . . 8
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β)) β (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) |
82 | | simp2 1134 |
. . . . . . . . 9
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) β π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) |
83 | 70 | eqcomd 2730 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) β (lim infβ(π β π β¦ π΅)) = (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)))) |
84 | 83 | 3adant3 1129 |
. . . . . . . . . 10
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) β (lim
infβ(π β π β¦ π΅)) = (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)))) |
85 | | simp3 1135 |
. . . . . . . . . 10
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) β (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) |
86 | 84, 85 | eqeltrd 2825 |
. . . . . . . . 9
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) β (lim
infβ(π β π β¦ π΅)) β β) |
87 | 82, 86 | jca 511 |
. . . . . . . 8
β’ ((π β§ π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β) β (π₯ β βͺ π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β)) |
88 | 75, 80, 81, 87 | syl3anc 1368 |
. . . . . . 7
β’ ((π β§ (π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β)) β (π₯ β βͺ π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β)) |
89 | 74, 88 | impbida 798 |
. . . . . 6
β’ (π β ((π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β§ (lim infβ(π β π β¦ π΅)) β β) β (π₯ β βͺ π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β§ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β))) |
90 | 3, 89 | rabbida3 44312 |
. . . . 5
β’ (π β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β£ (lim infβ(π β π β¦ π΅)) β β} = {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β}) |
91 | 5, 90 | eqtrd 2764 |
. . . 4
β’ (π β π· = {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β}) |
92 | 4 | eleq2i 2817 |
. . . . . . 7
β’ (π₯ β π· β π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β£ (lim infβ(π β π β¦ π΅)) β β}) |
93 | 92 | biimpi 215 |
. . . . . 6
β’ (π₯ β π· β π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β£ (lim infβ(π β π β¦ π΅)) β β}) |
94 | | rabidim1 3445 |
. . . . . 6
β’ (π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄ β£ (lim infβ(π β π β¦ π΅)) β β} β π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) |
95 | 93, 94 | syl 17 |
. . . . 5
β’ (π₯ β π· β π₯ β βͺ
π β π β© π β
(β€β₯βπ)π΄) |
96 | 95, 83 | sylan2 592 |
. . . 4
β’ ((π β§ π₯ β π·) β (lim infβ(π β π β¦ π΅)) = (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)))) |
97 | 3, 91, 96 | mpteq12da 5223 |
. . 3
β’ (π β (π₯ β π· β¦ (lim infβ(π β π β¦ π΅))) = (π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β} β¦ (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))))) |
98 | 2, 97 | eqtrd 2764 |
. 2
β’ (π β πΊ = (π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β} β¦ (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))))) |
99 | | nfmpt1 5246 |
. . 3
β’
β²π(π β π β¦ (π₯ β π΄ β¦ π΅)) |
100 | | nfcv 2895 |
. . . 4
β’
β²π₯π |
101 | | nfmpt1 5246 |
. . . 4
β’
β²π₯(π₯ β π΄ β¦ π΅) |
102 | 100, 101 | nfmpt 5245 |
. . 3
β’
β²π₯(π β π β¦ (π₯ β π΄ β¦ π΅)) |
103 | | smfliminfmpt.m |
. . 3
β’ (π β π β β€) |
104 | | smfliminfmpt.s |
. . 3
β’ (π β π β SAlg) |
105 | 8, 16 | fmptd2f 44422 |
. . 3
β’ (π β (π β π β¦ (π₯ β π΄ β¦ π΅)):πβΆ(SMblFnβπ)) |
106 | | eqid 2724 |
. . 3
β’ {π₯ β βͺ π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β} = {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β} |
107 | | eqid 2724 |
. . 3
β’ (π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β} β¦ (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)))) = (π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β} β¦ (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)))) |
108 | 99, 102, 103, 12, 104, 105, 106, 107 | smfliminf 46032 |
. 2
β’ (π β (π₯ β {π₯ β βͺ
π β π β© π β
(β€β₯βπ)dom ((π β π β¦ (π₯ β π΄ β¦ π΅))βπ) β£ (lim infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯))) β β} β¦ (lim
infβ(π β π β¦ (((π β π β¦ (π₯ β π΄ β¦ π΅))βπ)βπ₯)))) β (SMblFnβπ)) |
109 | 98, 108 | eqeltrd 2825 |
1
β’ (π β πΊ β (SMblFnβπ)) |