Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsupmpt Structured version   Visualization version   GIF version

Theorem smflimsupmpt 44034
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsupmpt.p 𝑚𝜑
smflimsupmpt.x 𝑥𝜑
smflimsupmpt.n 𝑛𝜑
smflimsupmpt.m (𝜑𝑀 ∈ ℤ)
smflimsupmpt.z 𝑍 = (ℤ𝑀)
smflimsupmpt.s (𝜑𝑆 ∈ SAlg)
smflimsupmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimsupmpt.f ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
smflimsupmpt.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimsupmpt
StepHypRef Expression
1 smflimsupmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))))
3 smflimsupmpt.x . . . 4 𝑥𝜑
4 smflimsupmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
6 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
7 smflimsupmpt.n . . . . . . . . . . . . 13 𝑛𝜑
8 smflimsupmpt.p . . . . . . . . . . . . . . 15 𝑚𝜑
9 nfv 1922 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍
108, 9nfan 1907 . . . . . . . . . . . . . 14 𝑚(𝜑𝑛𝑍)
11 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
12 smflimsupmpt.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
1312uztrn2 12457 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1413adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
15 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → 𝑚𝑍)
16 smflimsupmpt.f . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1716elexd 3428 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
18 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1918fvmpt2 6829 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2015, 17, 19syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2120dmeqd 5774 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
22 nfv 1922 . . . . . . . . . . . . . . . . . 18 𝑥 𝑚𝑍
233, 22nfan 1907 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑚𝑍)
24 eqid 2737 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
25 smflimsupmpt.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
26253expa 1120 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚𝑍) ∧ 𝑥𝐴) → 𝐵𝑊)
2723, 24, 26dmmptdf 42436 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
2821, 27eqtr2d 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
2911, 14, 28syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3010, 29iineq2d 4927 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
317, 30iuneq2df 42267 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3231adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
336, 32eleqtrd 2840 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3433adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
35 eliun 4908 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3635biimpi 219 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3736adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
38 nfv 1922 . . . . . . . . . . . . . 14 𝑛(lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))
39 nfcv 2904 . . . . . . . . . . . . . . . . . . . 20 𝑚𝑥
40 nfii1 4939 . . . . . . . . . . . . . . . . . . . 20 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
4139, 40nfel 2918 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
428, 9, 41nf3an 1909 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4320fveq1d 6719 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4411, 14, 43syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
45443adantl3 1170 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
46 eliinid 42334 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
47463ad2antl3 1189 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
48 simpl1 1193 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
49143adantl3 1170 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
5048, 49, 47, 25syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
5124fvmpt2 6829 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5247, 50, 51syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5345, 52eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = 𝐵)
5442, 53mpteq2da 5149 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ 𝐵))
5554fveq2d 6721 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
56 smflimsupmpt.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℤ)
57563ad2ant1 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑀 ∈ ℤ)
5812eluzelz2 42616 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍𝑛 ∈ ℤ)
59583ad2ant2 1136 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
60 eqid 2737 . . . . . . . . . . . . . . . . 17 (ℤ𝑛) = (ℤ𝑛)
61 fvexd 6732 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6249, 61syldan 594 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6342, 57, 59, 12, 60, 61, 62limsupequzmpt 42945 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
649nfci 2887 . . . . . . . . . . . . . . . . 17 𝑚𝑍
65 nfcv 2904 . . . . . . . . . . . . . . . . 17 𝑚(ℤ𝑛)
66 simp2 1139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
6759uzidd 12454 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ (ℤ𝑛))
6842, 64, 65, 12, 60, 66, 67, 50limsupequzmpt2 42934 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
6955, 63, 683eqtr4d 2787 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
70693exp 1121 . . . . . . . . . . . . . 14 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))))
717, 38, 70rexlimd 3236 . . . . . . . . . . . . 13 (𝜑 → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7271adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7337, 72mpd 15 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
7473adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
75 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
7674, 75eqeltrd 2838 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
7734, 76jca 515 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ))
7877ex 416 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
79 simpl 486 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝜑)
80 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
8131eqcomd 2743 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8281adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8380, 82eleqtrd 2840 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
85 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
86 simp2 1139 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8773eqcomd 2743 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
88873adant3 1134 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
89 simp3 1140 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
9088, 89eqeltrd 2838 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
9186, 90jca 515 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9279, 84, 85, 91syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9392ex 416 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)))
9478, 93impbid 215 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
953, 94rabbida3 42357 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
965, 95eqtrd 2777 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
974eleq2i 2829 . . . . . . 7 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
9897biimpi 219 . . . . . 6 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
99 rabidim1 3292 . . . . . 6 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
10098, 99syl 17 . . . . 5 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
101100, 87sylan2 596 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1023, 96, 101mpteq12da 42459 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1032, 102eqtrd 2777 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
104 nfmpt1 5153 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
105 nfcv 2904 . . . 4 𝑥𝑍
106 nfmpt1 5153 . . . 4 𝑥(𝑥𝐴𝐵)
107105, 106nfmpt 5152 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
108 smflimsupmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
1098, 16fmptd2f 42451 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
110 eqid 2737 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ}
111 eqid 2737 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
112104, 107, 56, 12, 108, 109, 110, 111smflimsup 44033 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
113103, 112eqeltrd 2838 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wnf 1791  wcel 2110  wrex 3062  {crab 3065  Vcvv 3408   ciun 4904   ciin 4905  cmpt 5135  dom cdm 5551  cfv 6380  cr 10728  cz 12176  cuz 12438  lim supclsp 15031  SAlgcsalg 43524  SMblFncsmblfn 43908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-ioo 12939  df-ioc 12940  df-ico 12941  df-fz 13096  df-fl 13367  df-ceil 13368  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-rest 16927  df-topgen 16948  df-top 21791  df-bases 21843  df-salg 43525  df-salgen 43529  df-smblfn 43909
This theorem is referenced by:  smfliminflem  44035
  Copyright terms: Public domain W3C validator