Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsupmpt Structured version   Visualization version   GIF version

Theorem smflimsupmpt 44249
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsupmpt.p 𝑚𝜑
smflimsupmpt.x 𝑥𝜑
smflimsupmpt.n 𝑛𝜑
smflimsupmpt.m (𝜑𝑀 ∈ ℤ)
smflimsupmpt.z 𝑍 = (ℤ𝑀)
smflimsupmpt.s (𝜑𝑆 ∈ SAlg)
smflimsupmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimsupmpt.f ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
smflimsupmpt.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimsupmpt
StepHypRef Expression
1 smflimsupmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))))
3 smflimsupmpt.x . . . 4 𝑥𝜑
4 smflimsupmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
6 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
7 smflimsupmpt.n . . . . . . . . . . . . 13 𝑛𝜑
8 smflimsupmpt.p . . . . . . . . . . . . . . 15 𝑚𝜑
9 nfv 1918 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍
108, 9nfan 1903 . . . . . . . . . . . . . 14 𝑚(𝜑𝑛𝑍)
11 simpll 763 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
12 smflimsupmpt.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
1312uztrn2 12530 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1413adantll 710 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
15 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → 𝑚𝑍)
16 smflimsupmpt.f . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1716elexd 3442 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
18 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1918fvmpt2 6868 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2015, 17, 19syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2120dmeqd 5803 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
22 nfv 1918 . . . . . . . . . . . . . . . . . 18 𝑥 𝑚𝑍
233, 22nfan 1903 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑚𝑍)
24 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
25 smflimsupmpt.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
26253expa 1116 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚𝑍) ∧ 𝑥𝐴) → 𝐵𝑊)
2723, 24, 26dmmptdf 42652 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
2821, 27eqtr2d 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
2911, 14, 28syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3010, 29iineq2d 4944 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
317, 30iuneq2df 42483 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
336, 32eleqtrd 2841 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3433adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
35 eliun 4925 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3635biimpi 215 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3736adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
38 nfv 1918 . . . . . . . . . . . . . 14 𝑛(lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))
39 nfcv 2906 . . . . . . . . . . . . . . . . . . . 20 𝑚𝑥
40 nfii1 4956 . . . . . . . . . . . . . . . . . . . 20 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
4139, 40nfel 2920 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
428, 9, 41nf3an 1905 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4320fveq1d 6758 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4411, 14, 43syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
45443adantl3 1166 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
46 eliinid 42550 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
47463ad2antl3 1185 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
48 simpl1 1189 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
49143adantl3 1166 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
5048, 49, 47, 25syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
5124fvmpt2 6868 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5247, 50, 51syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5345, 52eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = 𝐵)
5442, 53mpteq2da 5168 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ 𝐵))
5554fveq2d 6760 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
56 smflimsupmpt.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℤ)
57563ad2ant1 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑀 ∈ ℤ)
5812eluzelz2 42833 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍𝑛 ∈ ℤ)
59583ad2ant2 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
60 eqid 2738 . . . . . . . . . . . . . . . . 17 (ℤ𝑛) = (ℤ𝑛)
61 fvexd 6771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6249, 61syldan 590 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6342, 57, 59, 12, 60, 61, 62limsupequzmpt 43160 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
649nfci 2889 . . . . . . . . . . . . . . . . 17 𝑚𝑍
65 nfcv 2906 . . . . . . . . . . . . . . . . 17 𝑚(ℤ𝑛)
66 simp2 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
6759uzidd 12527 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ (ℤ𝑛))
6842, 64, 65, 12, 60, 66, 67, 50limsupequzmpt2 43149 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
6955, 63, 683eqtr4d 2788 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
70693exp 1117 . . . . . . . . . . . . . 14 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))))
717, 38, 70rexlimd 3245 . . . . . . . . . . . . 13 (𝜑 → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7271adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7337, 72mpd 15 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
7473adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
75 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
7674, 75eqeltrd 2839 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
7734, 76jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ))
7877ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
79 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝜑)
80 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
8131eqcomd 2744 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8281adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8380, 82eleqtrd 2841 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
85 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
86 simp2 1135 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8773eqcomd 2744 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
88873adant3 1130 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
89 simp3 1136 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
9088, 89eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
9186, 90jca 511 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9279, 84, 85, 91syl3anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9392ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)))
9478, 93impbid 211 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
953, 94rabbida3 42573 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
965, 95eqtrd 2778 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
974eleq2i 2830 . . . . . . 7 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
9897biimpi 215 . . . . . 6 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
99 rabidim1 3306 . . . . . 6 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
10098, 99syl 17 . . . . 5 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
101100, 87sylan2 592 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1023, 96, 101mpteq12da 5155 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1032, 102eqtrd 2778 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
104 nfmpt1 5178 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
105 nfcv 2906 . . . 4 𝑥𝑍
106 nfmpt1 5178 . . . 4 𝑥(𝑥𝐴𝐵)
107105, 106nfmpt 5177 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
108 smflimsupmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
1098, 16fmptd2f 42667 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
110 eqid 2738 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ}
111 eqid 2738 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
112104, 107, 56, 12, 108, 109, 110, 111smflimsup 44248 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
113103, 112eqeltrd 2839 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422   ciun 4921   ciin 4922  cmpt 5153  dom cdm 5580  cfv 6418  cr 10801  cz 12249  cuz 12511  lim supclsp 15107  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ioc 13013  df-ico 13014  df-fz 13169  df-fl 13440  df-ceil 13441  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-rest 17050  df-topgen 17071  df-top 21951  df-bases 22004  df-salg 43740  df-salgen 43744  df-smblfn 44124
This theorem is referenced by:  smfliminflem  44250
  Copyright terms: Public domain W3C validator