Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsupmpt Structured version   Visualization version   GIF version

Theorem smflimsupmpt 42980
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsupmpt.p 𝑚𝜑
smflimsupmpt.x 𝑥𝜑
smflimsupmpt.n 𝑛𝜑
smflimsupmpt.m (𝜑𝑀 ∈ ℤ)
smflimsupmpt.z 𝑍 = (ℤ𝑀)
smflimsupmpt.s (𝜑𝑆 ∈ SAlg)
smflimsupmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimsupmpt.f ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
smflimsupmpt.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimsupmpt
StepHypRef Expression
1 smflimsupmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))))
3 smflimsupmpt.x . . . 4 𝑥𝜑
4 smflimsupmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
6 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
7 smflimsupmpt.n . . . . . . . . . . . . 13 𝑛𝜑
8 smflimsupmpt.p . . . . . . . . . . . . . . 15 𝑚𝜑
9 nfv 1906 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍
108, 9nfan 1891 . . . . . . . . . . . . . 14 𝑚(𝜑𝑛𝑍)
11 simpll 763 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
12 smflimsupmpt.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
1312uztrn2 12250 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1413adantll 710 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
15 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → 𝑚𝑍)
16 smflimsupmpt.f . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1716elexd 3512 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
18 eqid 2818 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1918fvmpt2 6771 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2015, 17, 19syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2120dmeqd 5767 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
22 nfv 1906 . . . . . . . . . . . . . . . . . 18 𝑥 𝑚𝑍
233, 22nfan 1891 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑚𝑍)
24 eqid 2818 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
25 smflimsupmpt.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
26253expa 1110 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚𝑍) ∧ 𝑥𝐴) → 𝐵𝑊)
2723, 24, 26dmmptdf 41364 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
2821, 27eqtr2d 2854 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
2911, 14, 28syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3010, 29iineq2d 4933 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
317, 30iuneq2df 41185 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3231adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
336, 32eleqtrd 2912 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3433adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
35 eliun 4914 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3635biimpi 217 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3736adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
38 nfv 1906 . . . . . . . . . . . . . 14 𝑛(lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))
39 nfcv 2974 . . . . . . . . . . . . . . . . . . . 20 𝑚𝑥
40 nfii1 4945 . . . . . . . . . . . . . . . . . . . 20 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
4139, 40nfel 2989 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
428, 9, 41nf3an 1893 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4320fveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4411, 14, 43syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
45443adantl3 1160 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
46 eliinid 41254 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
47463ad2antl3 1179 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
48 simpl1 1183 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
49143adantl3 1160 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
5048, 49, 47, 25syl3anc 1363 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
5124fvmpt2 6771 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5247, 50, 51syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5345, 52eqtrd 2853 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = 𝐵)
5442, 53mpteq2da 5151 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ 𝐵))
5554fveq2d 6667 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
56 smflimsupmpt.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℤ)
57563ad2ant1 1125 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑀 ∈ ℤ)
5812eluzelz2 41552 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍𝑛 ∈ ℤ)
59583ad2ant2 1126 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
60 eqid 2818 . . . . . . . . . . . . . . . . 17 (ℤ𝑛) = (ℤ𝑛)
61 fvexd 6678 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6249, 61syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6342, 57, 59, 12, 60, 61, 62limsupequzmpt 41886 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
649nfci 2961 . . . . . . . . . . . . . . . . 17 𝑚𝑍
65 nfcv 2974 . . . . . . . . . . . . . . . . 17 𝑚(ℤ𝑛)
66 simp2 1129 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
6759uzidd 12247 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ (ℤ𝑛))
6842, 64, 65, 12, 60, 66, 67, 50limsupequzmpt2 41875 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
6955, 63, 683eqtr4d 2863 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
70693exp 1111 . . . . . . . . . . . . . 14 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))))
717, 38, 70rexlimd 3314 . . . . . . . . . . . . 13 (𝜑 → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7271adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7337, 72mpd 15 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
7473adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
75 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
7674, 75eqeltrd 2910 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
7734, 76jca 512 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ))
7877ex 413 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
79 simpl 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝜑)
80 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
8131eqcomd 2824 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8281adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8380, 82eleqtrd 2912 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
85 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
86 simp2 1129 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8773eqcomd 2824 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
88873adant3 1124 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
89 simp3 1130 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
9088, 89eqeltrd 2910 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
9186, 90jca 512 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9279, 84, 85, 91syl3anc 1363 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9392ex 413 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)))
9478, 93impbid 213 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
953, 94rabbida3 41278 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
965, 95eqtrd 2853 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
974eleq2i 2901 . . . . . . 7 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
9897biimpi 217 . . . . . 6 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
99 rabidim1 3378 . . . . . 6 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
10098, 99syl 17 . . . . 5 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
101100, 87sylan2 592 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1023, 96, 101mpteq12da 41389 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1032, 102eqtrd 2853 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
104 nfmpt1 5155 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
105 nfcv 2974 . . . 4 𝑥𝑍
106 nfmpt1 5155 . . . 4 𝑥(𝑥𝐴𝐵)
107105, 106nfmpt 5154 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
108 smflimsupmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
1098, 16fmptd2f 41381 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
110 eqid 2818 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ}
111 eqid 2818 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
112104, 107, 56, 12, 108, 109, 110, 111smflimsup 42979 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
113103, 112eqeltrd 2910 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wnf 1775  wcel 2105  wrex 3136  {crab 3139  Vcvv 3492   ciun 4910   ciin 4911  cmpt 5137  dom cdm 5548  cfv 6348  cr 10524  cz 11969  cuz 12231  lim supclsp 14815  SAlgcsalg 42470  SMblFncsmblfn 42854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2381  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ioc 12731  df-ico 12732  df-fz 12881  df-fl 13150  df-ceil 13151  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-rest 16684  df-topgen 16705  df-top 21430  df-bases 21482  df-salg 42471  df-salgen 42475  df-smblfn 42855
This theorem is referenced by:  smfliminflem  42981
  Copyright terms: Public domain W3C validator