Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsupmpt Structured version   Visualization version   GIF version

Theorem smflimsupmpt 46820
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsupmpt.p 𝑚𝜑
smflimsupmpt.x 𝑥𝜑
smflimsupmpt.n 𝑛𝜑
smflimsupmpt.m (𝜑𝑀 ∈ ℤ)
smflimsupmpt.z 𝑍 = (ℤ𝑀)
smflimsupmpt.s (𝜑𝑆 ∈ SAlg)
smflimsupmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimsupmpt.f ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
smflimsupmpt.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑚,𝑀   𝑆,𝑚   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimsupmpt
StepHypRef Expression
1 smflimsupmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))))
3 smflimsupmpt.x . . . 4 𝑥𝜑
4 smflimsupmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ}
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
6 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
7 smflimsupmpt.n . . . . . . . . . . . . 13 𝑛𝜑
8 smflimsupmpt.p . . . . . . . . . . . . . . 15 𝑚𝜑
9 nfv 1914 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍
108, 9nfan 1899 . . . . . . . . . . . . . 14 𝑚(𝜑𝑛𝑍)
11 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
12 smflimsupmpt.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
1312uztrn2 12818 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1413adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
15 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → 𝑚𝑍)
16 smflimsupmpt.f . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1716elexd 3474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
18 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1918fvmpt2 6981 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2015, 17, 19syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2120dmeqd 5871 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
22 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑥 𝑚𝑍
233, 22nfan 1899 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑚𝑍)
24 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
25 smflimsupmpt.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
26253expa 1118 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚𝑍) ∧ 𝑥𝐴) → 𝐵𝑊)
2723, 24, 26dmmptdf 45211 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
2821, 27eqtr2d 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
2911, 14, 28syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3010, 29iineq2d 4981 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
317, 30iuneq2df 45034 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
336, 32eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3433adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
35 eliun 4961 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3635biimpi 216 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
3736adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
38 nfv 1914 . . . . . . . . . . . . . 14 𝑛(lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))
39 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑚𝑥
40 nfii1 4995 . . . . . . . . . . . . . . . . . . . 20 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
4139, 40nfel 2907 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
428, 9, 41nf3an 1901 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4320fveq1d 6862 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4411, 14, 43syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
45443adantl3 1169 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
46 eliinid 45098 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
47463ad2antl3 1188 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
48 simpl1 1192 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
49143adantl3 1169 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
5048, 49, 47, 25syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
5124fvmpt2 6981 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5247, 50, 51syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5345, 52eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = 𝐵)
5442, 53mpteq2da 5201 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ 𝐵))
5554fveq2d 6864 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
56 smflimsupmpt.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℤ)
57563ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑀 ∈ ℤ)
5812eluzelz2 45392 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍𝑛 ∈ ℤ)
59583ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
60 eqid 2730 . . . . . . . . . . . . . . . . 17 (ℤ𝑛) = (ℤ𝑛)
61 fvexd 6875 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6249, 61syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) ∈ V)
6342, 57, 59, 12, 60, 61, 62limsupequzmpt 45720 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
649nfci 2880 . . . . . . . . . . . . . . . . 17 𝑚𝑍
65 nfcv 2892 . . . . . . . . . . . . . . . . 17 𝑚(ℤ𝑛)
66 simp2 1137 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
6759uzidd 12815 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ (ℤ𝑛))
6842, 64, 65, 12, 60, 66, 67, 50limsupequzmpt2 45709 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ 𝐵)))
6955, 63, 683eqtr4d 2775 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
70693exp 1119 . . . . . . . . . . . . . 14 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))))
717, 38, 70rexlimd 3245 . . . . . . . . . . . . 13 (𝜑 → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7271adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵))))
7337, 72mpd 15 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
7473adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍𝐵)))
75 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
7674, 75eqeltrd 2829 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
7734, 76jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ))
7877ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
79 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝜑)
80 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
8131eqcomd 2736 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8281adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8380, 82eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
85 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
86 simp2 1137 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8773eqcomd 2736 . . . . . . . . . . . 12 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
88873adant3 1132 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
89 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)
9088, 89eqeltrd 2829 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)
9186, 90jca 511 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9279, 84, 85, 91syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ))
9392ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ)))
9478, 93impbid 212 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ)))
953, 94rabbida3 45122 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
965, 95eqtrd 2765 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ})
974eleq2i 2821 . . . . . . 7 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
9897biimpi 216 . . . . . 6 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ})
99 rabidim1 3431 . . . . . 6 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (lim sup‘(𝑚𝑍𝐵)) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
10098, 99syl 17 . . . . 5 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
101100, 87sylan2 593 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍𝐵)) = (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1023, 96, 101mpteq12da 5192 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1032, 102eqtrd 2765 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
104 nfmpt1 5208 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
105 nfcv 2892 . . . 4 𝑥𝑍
106 nfmpt1 5208 . . . 4 𝑥(𝑥𝐴𝐵)
107105, 106nfmpt 5207 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
108 smflimsupmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
1098, 16fmptd2f 45222 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
110 eqid 2730 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ}
111 eqid 2730 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
112104, 107, 56, 12, 108, 109, 110, 111smflimsup 46819 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim sup‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
113103, 112eqeltrd 2829 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450   ciun 4957   ciin 4958  cmpt 5190  dom cdm 5640  cfv 6513  cr 11073  cz 12535  cuz 12799  lim supclsp 15442  SAlgcsalg 46299  SMblFncsmblfn 46686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cc 10394  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-omul 8441  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-acn 9901  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-ioo 13316  df-ioc 13317  df-ico 13318  df-fz 13475  df-fl 13760  df-ceil 13761  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-rest 17391  df-topgen 17412  df-top 22787  df-bases 22839  df-salg 46300  df-salgen 46304  df-smblfn 46687
This theorem is referenced by:  smfliminflem  46821
  Copyright terms: Public domain W3C validator