Proof of Theorem smflimsupmpt
Step | Hyp | Ref
| Expression |
1 | | smflimsupmpt.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)))) |
3 | | smflimsupmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
4 | | smflimsupmpt.d |
. . . . . 6
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} |
5 | 4 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ}) |
6 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
7 | | smflimsupmpt.n |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛𝜑 |
8 | | smflimsupmpt.p |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚𝜑 |
9 | | nfv 1922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚 𝑛 ∈ 𝑍 |
10 | 8, 9 | nfan 1907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
11 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
12 | | smflimsupmpt.z |
. . . . . . . . . . . . . . . . 17
⊢ 𝑍 =
(ℤ≥‘𝑀) |
13 | 12 | uztrn2 12457 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
14 | 13 | adantll 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
15 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
16 | | smflimsupmpt.f |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
17 | 16 | elexd 3428 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
18 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
19 | 18 | fvmpt2 6829 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ 𝑍 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
20 | 15, 17, 19 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | 20 | dmeqd 5774 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | | nfv 1922 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥 𝑚 ∈ 𝑍 |
23 | 3, 22 | nfan 1907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝜑 ∧ 𝑚 ∈ 𝑍) |
24 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
25 | | smflimsupmpt.b |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
26 | 25 | 3expa 1120 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
27 | 23, 24, 26 | dmmptdf 42436 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
28 | 21, 27 | eqtr2d 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐴 = dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
29 | 11, 14, 28 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 = dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
30 | 10, 29 | iineq2d 4927 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 = ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
31 | 7, 30 | iuneq2df 42267 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
32 | 31 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
33 | 6, 32 | eleqtrd 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
34 | 33 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ)) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
35 | | eliun 4908 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ↔ ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
36 | 35 | biimpi 219 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
37 | 36 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
38 | | nfv 1922 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) |
39 | | nfcv 2904 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚𝑥 |
40 | | nfii1 4939 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 |
41 | 39, 40 | nfel 2918 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚 𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 |
42 | 8, 9, 41 | nf3an 1909 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
43 | 20 | fveq1d 6719 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
44 | 11, 14, 43 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
45 | 44 | 3adantl3 1170 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
46 | | eliinid 42334 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ 𝐴) |
47 | 46 | 3ad2antl3 1189 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ 𝐴) |
48 | | simpl1 1193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
49 | 14 | 3adantl3 1170 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
50 | 48, 49, 47, 25 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐵 ∈ 𝑊) |
51 | 24 | fvmpt2 6829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
52 | 47, 50, 51 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
53 | 45, 52 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥) = 𝐵) |
54 | 42, 53 | mpteq2da 5149 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ 𝐵)) |
55 | 54 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ 𝐵))) |
56 | | smflimsupmpt.m |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ ℤ) |
57 | 56 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑀 ∈ ℤ) |
58 | 12 | eluzelz2 42616 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
59 | 58 | 3ad2ant2 1136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑛 ∈ ℤ) |
60 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
61 | | fvexd 6732 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ 𝑍) → (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥) ∈ V) |
62 | 49, 61 | syldan 594 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥) ∈ V) |
63 | 42, 57, 59, 12, 60, 61, 62 | limsupequzmpt 42945 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) |
64 | 9 | nfci 2887 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚𝑍 |
65 | | nfcv 2904 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚(ℤ≥‘𝑛) |
66 | | simp2 1139 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑛 ∈ 𝑍) |
67 | 59 | uzidd 12454 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑛 ∈ (ℤ≥‘𝑛)) |
68 | 42, 64, 65, 12, 60, 66, 67, 50 | limsupequzmpt2 42934 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) = (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ 𝐵))) |
69 | 55, 63, 68 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) |
70 | 69 | 3exp 1121 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))))) |
71 | 7, 38, 70 | rexlimd 3236 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)))) |
72 | 71 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)))) |
73 | 37, 72 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) |
74 | 73 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ)) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) |
75 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ)) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
76 | 74, 75 | eqeltrd 2838 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ)) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) |
77 | 34, 76 | jca 515 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ)) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) |
78 | 77 | ex 416 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ))) |
79 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝜑) |
80 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
81 | 31 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
82 | 81 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) → ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
83 | 80, 82 | eleqtrd 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
84 | 83 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
85 | | simprr 773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) |
86 | | simp2 1139 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
87 | 73 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) = (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) |
88 | 87 | 3adant3 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) = (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) |
89 | | simp3 1140 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) |
90 | 88, 89 | eqeltrd 2838 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
91 | 86, 90 | jca 515 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ)) |
92 | 79, 84, 85, 91 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ)) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ)) |
93 | 92 | ex 416 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ))) |
94 | 78, 93 | impbid 215 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) ↔ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ))) |
95 | 3, 94 | rabbida3 42357 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ}) |
96 | 5, 95 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ}) |
97 | 4 | eleq2i 2829 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ}) |
98 | 97 | biimpi 219 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ}) |
99 | | rabidim1 3292 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
100 | 98, 99 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
101 | 100, 87 | sylan2 596 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) = (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) |
102 | 3, 96, 101 | mpteq12da 42459 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))))) |
103 | 2, 102 | eqtrd 2777 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))))) |
104 | | nfmpt1 5153 |
. . 3
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
105 | | nfcv 2904 |
. . . 4
⊢
Ⅎ𝑥𝑍 |
106 | | nfmpt1 5153 |
. . . 4
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
107 | 105, 106 | nfmpt 5152 |
. . 3
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
108 | | smflimsupmpt.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ SAlg) |
109 | 8, 16 | fmptd2f 42451 |
. . 3
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)):𝑍⟶(SMblFn‘𝑆)) |
110 | | eqid 2737 |
. . 3
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ} |
111 | | eqid 2737 |
. . 3
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) |
112 | 104, 107,
56, 12, 108, 109, 110, 111 | smflimsup 44033 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) ∈ ℝ} ↦ (lim
sup‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆)) |
113 | 103, 112 | eqeltrd 2838 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |