Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupmpt Structured version   Visualization version   GIF version

Theorem smfsupmpt 46736
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupmpt.n 𝑛𝜑
smfsupmpt.x 𝑥𝜑
smfsupmpt.y 𝑦𝜑
smfsupmpt.m (𝜑𝑀 ∈ ℤ)
smfsupmpt.z 𝑍 = (ℤ𝑀)
smfsupmpt.s (𝜑𝑆 ∈ SAlg)
smfsupmpt.b ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
smfsupmpt.f ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
smfsupmpt.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
Assertion
Ref Expression
smfsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐴(𝑛)   𝐵(𝑥,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)   𝑉(𝑥,𝑦,𝑛)

Proof of Theorem smfsupmpt
StepHypRef Expression
1 smfsupmpt.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
2 smfsupmpt.x . . . 4 𝑥𝜑
3 smfsupmpt.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
4 smfsupmpt.n . . . . . . . 8 𝑛𝜑
5 eqidd 2741 . . . . . . . . . . 11 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵)))
6 smfsupmpt.f . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
75, 6fvmpt2d 7042 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = (𝑥𝐴𝐵))
87dmeqd 5930 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = dom (𝑥𝐴𝐵))
9 nfcv 2908 . . . . . . . . . . . 12 𝑥𝑍
109nfcri 2900 . . . . . . . . . . 11 𝑥 𝑛𝑍
112, 10nfan 1898 . . . . . . . . . 10 𝑥(𝜑𝑛𝑍)
12 eqid 2740 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
13 smfsupmpt.b . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
14133expa 1118 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
1511, 12, 14dmmptdf 45131 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
168, 15eqtr2d 2781 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐴 = dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
174, 16iineq2d 5038 . . . . . . 7 (𝜑 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
18 nfcv 2908 . . . . . . . 8 𝑥 𝑛𝑍 𝐴
19 nfmpt1 5274 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝐵)
209, 19nfmpt 5273 . . . . . . . . . . 11 𝑥(𝑛𝑍 ↦ (𝑥𝐴𝐵))
21 nfcv 2908 . . . . . . . . . . 11 𝑥𝑛
2220, 21nffv 6930 . . . . . . . . . 10 𝑥((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2322nfdm 5976 . . . . . . . . 9 𝑥dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
249, 23nfiin 5047 . . . . . . . 8 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2518, 24rabeqf 3480 . . . . . . 7 ( 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
2617, 25syl 17 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
27 smfsupmpt.y . . . . . . . . 9 𝑦𝜑
28 nfv 1913 . . . . . . . . 9 𝑦 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2927, 28nfan 1898 . . . . . . . 8 𝑦(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
30 nfii1 5052 . . . . . . . . . . 11 𝑛 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3130nfcri 2900 . . . . . . . . . 10 𝑛 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
324, 31nfan 1898 . . . . . . . . 9 𝑛(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
33 simpll 766 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝜑)
34 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
35 eliinid 45013 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
3635adantll 713 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
378, 15eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3837adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3936, 38eleqtrd 2846 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥𝐴)
407fveq1d 6922 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
41403adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
42 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → 𝑥𝐴)
43 fvmpt4 45146 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4442, 13, 43syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4541, 44eqtr2d 2781 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
4645breq1d 5176 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥𝐴) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4733, 34, 39, 46syl3anc 1371 . . . . . . . . 9 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4832, 47ralbida 3276 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∀𝑛𝑍 𝐵𝑦 ↔ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4929, 48rexbid 3280 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
502, 49rabbida 3471 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
5126, 50eqtrd 2780 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
523, 51eqtrid 2792 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
53 nfcv 2908 . . . . . . . . . . . 12 𝑛
54 nfra1 3290 . . . . . . . . . . . 12 𝑛𝑛𝑍 𝐵𝑦
5553, 54nfrexw 3319 . . . . . . . . . . 11 𝑛𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦
56 nfii1 5052 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝐴
5755, 56nfrabw 3483 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
583, 57nfcxfr 2906 . . . . . . . . 9 𝑛𝐷
5958nfcri 2900 . . . . . . . 8 𝑛 𝑥𝐷
604, 59nfan 1898 . . . . . . 7 𝑛(𝜑𝑥𝐷)
61 simpll 766 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝜑)
62 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑛𝑍)
63 rabidim1 3466 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} → 𝑥 𝑛𝑍 𝐴)
6463, 3eleq2s 2862 . . . . . . . . . 10 (𝑥𝐷𝑥 𝑛𝑍 𝐴)
65 eliinid 45013 . . . . . . . . . 10 ((𝑥 𝑛𝑍 𝐴𝑛𝑍) → 𝑥𝐴)
6664, 65sylan 579 . . . . . . . . 9 ((𝑥𝐷𝑛𝑍) → 𝑥𝐴)
6766adantll 713 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥𝐴)
6861, 62, 67, 45syl3anc 1371 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
6960, 68mpteq2da 5264 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍𝐵) = (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
7069rneqd 5963 . . . . 5 ((𝜑𝑥𝐷) → ran (𝑛𝑍𝐵) = ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
7170supeq1d 9515 . . . 4 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍𝐵), ℝ, < ) = sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
722, 52, 71mpteq12da 5251 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
731, 72eqtrid 2792 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
74 nfmpt1 5274 . . 3 𝑛(𝑛𝑍 ↦ (𝑥𝐴𝐵))
75 smfsupmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
76 smfsupmpt.z . . 3 𝑍 = (ℤ𝑀)
77 smfsupmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
784, 6fmptd2f 45142 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
79 eqid 2740 . . 3 {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦}
80 eqid 2740 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
8174, 20, 75, 76, 77, 78, 79, 80smfsup 46735 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
8273, 81eqeltrd 2844 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076  {crab 3443   ciin 5016   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cfv 6573  supcsup 9509  cr 11183   < clt 11324  cle 11325  cz 12639  cuz 12903  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ioc 13412  df-ico 13413  df-fl 13843  df-rest 17482  df-topgen 17503  df-top 22921  df-bases 22974  df-salg 46230  df-salgen 46234  df-smblfn 46617
This theorem is referenced by:  smfinflem  46738
  Copyright terms: Public domain W3C validator