Proof of Theorem smfsupmpt
Step | Hyp | Ref
| Expression |
1 | | smfsupmpt.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) |
2 | | smfsupmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
3 | | smfsupmpt.d |
. . . . 5
⊢ 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} |
4 | | smfsupmpt.n |
. . . . . . . 8
⊢
Ⅎ𝑛𝜑 |
5 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))) |
6 | | smfsupmpt.f |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
7 | 5, 6 | fvmpt2d 6870 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | 7 | dmeqd 5803 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
9 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑍 |
10 | 9 | nfcri 2893 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑛 ∈ 𝑍 |
11 | 2, 10 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ 𝑍) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
13 | | smfsupmpt.b |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
14 | 13 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
15 | 11, 12, 14 | dmmptdf 42652 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
16 | 8, 15 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 = dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
17 | 4, 16 | iineq2d 4944 |
. . . . . . 7
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 𝐴 = ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
18 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥∩ 𝑛 ∈ 𝑍 𝐴 |
19 | | nfmpt1 5178 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
20 | 9, 19 | nfmpt 5177 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑛 |
22 | 20, 21 | nffv 6766 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
23 | 22 | nfdm 5849 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
24 | 9, 23 | nfiin 4952 |
. . . . . . . 8
⊢
Ⅎ𝑥∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
25 | 18, 24 | rabeqf 3405 |
. . . . . . 7
⊢ (∩ 𝑛 ∈ 𝑍 𝐴 = ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦}) |
26 | 17, 25 | syl 17 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦}) |
27 | | smfsupmpt.y |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜑 |
28 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
29 | 27, 28 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
30 | | nfii1 4956 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
31 | 30 | nfcri 2893 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
32 | 4, 31 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
33 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
34 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
35 | | eliinid 42550 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
36 | 35 | adantll 710 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
37 | 8, 15 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = 𝐴) |
38 | 37 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = 𝐴) |
39 | 36, 38 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
40 | 7 | fveq1d 6758 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
41 | 40 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
42 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
43 | | fvmpt4 42671 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
44 | 42, 13, 43 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
45 | 41, 44 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
46 | 45 | breq1d 5080 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑦 ↔ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
47 | 33, 34, 39, 46 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → (𝐵 ≤ 𝑦 ↔ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
48 | 32, 47 | ralbida 3156 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) → (∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
49 | 29, 48 | rexbid 3248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
50 | 2, 49 | rabbida 3398 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦}) |
51 | 26, 50 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦}) |
52 | 3, 51 | syl5eq 2791 |
. . . 4
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦}) |
53 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛ℝ |
54 | | nfra1 3142 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 |
55 | 53, 54 | nfrex 3237 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 |
56 | | nfii1 4956 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 𝐴 |
57 | 55, 56 | nfrabw 3311 |
. . . . . . . . . 10
⊢
Ⅎ𝑛{𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} |
58 | 3, 57 | nfcxfr 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝐷 |
59 | 58 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑛 𝑥 ∈ 𝐷 |
60 | 4, 59 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
61 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
62 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
63 | | rabidim1 3306 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
64 | 63, 3 | eleq2s 2857 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
65 | | eliinid 42550 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
66 | 64, 65 | sylan 579 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
67 | 66 | adantll 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
68 | 61, 62, 67, 45 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
69 | 60, 68 | mpteq2da 5168 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
70 | 69 | rneqd 5836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ran (𝑛 ∈ 𝑍 ↦ 𝐵) = ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
71 | 70 | supeq1d 9135 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
72 | 2, 52, 71 | mpteq12da 5155 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
73 | 1, 72 | syl5eq 2791 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
74 | | nfmpt1 5178 |
. . 3
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
75 | | smfsupmpt.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
76 | | smfsupmpt.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
77 | | smfsupmpt.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ SAlg) |
78 | 4, 6 | fmptd2f 42667 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)):𝑍⟶(SMblFn‘𝑆)) |
79 | | eqid 2738 |
. . 3
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} |
80 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
81 | 74, 20, 75, 76, 77, 78, 79, 80 | smfsup 44234 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈
(SMblFn‘𝑆)) |
82 | 73, 81 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |