Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupmpt Structured version   Visualization version   GIF version

Theorem smfsupmpt 46770
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupmpt.n 𝑛𝜑
smfsupmpt.x 𝑥𝜑
smfsupmpt.y 𝑦𝜑
smfsupmpt.m (𝜑𝑀 ∈ ℤ)
smfsupmpt.z 𝑍 = (ℤ𝑀)
smfsupmpt.s (𝜑𝑆 ∈ SAlg)
smfsupmpt.b ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
smfsupmpt.f ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
smfsupmpt.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
Assertion
Ref Expression
smfsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐴(𝑛)   𝐵(𝑥,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)   𝑉(𝑥,𝑦,𝑛)

Proof of Theorem smfsupmpt
StepHypRef Expression
1 smfsupmpt.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
2 smfsupmpt.x . . . 4 𝑥𝜑
3 smfsupmpt.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
4 smfsupmpt.n . . . . . . . 8 𝑛𝜑
5 eqidd 2735 . . . . . . . . . . 11 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵)))
6 smfsupmpt.f . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
75, 6fvmpt2d 7028 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = (𝑥𝐴𝐵))
87dmeqd 5918 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = dom (𝑥𝐴𝐵))
9 nfcv 2902 . . . . . . . . . . . 12 𝑥𝑍
109nfcri 2894 . . . . . . . . . . 11 𝑥 𝑛𝑍
112, 10nfan 1896 . . . . . . . . . 10 𝑥(𝜑𝑛𝑍)
12 eqid 2734 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
13 smfsupmpt.b . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
14133expa 1117 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
1511, 12, 14dmmptdf 45166 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
168, 15eqtr2d 2775 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐴 = dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
174, 16iineq2d 5019 . . . . . . 7 (𝜑 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
18 nfcv 2902 . . . . . . . 8 𝑥 𝑛𝑍 𝐴
19 nfmpt1 5255 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝐵)
209, 19nfmpt 5254 . . . . . . . . . . 11 𝑥(𝑛𝑍 ↦ (𝑥𝐴𝐵))
21 nfcv 2902 . . . . . . . . . . 11 𝑥𝑛
2220, 21nffv 6916 . . . . . . . . . 10 𝑥((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2322nfdm 5964 . . . . . . . . 9 𝑥dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
249, 23nfiin 5028 . . . . . . . 8 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2518, 24rabeqf 3469 . . . . . . 7 ( 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
2617, 25syl 17 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
27 smfsupmpt.y . . . . . . . . 9 𝑦𝜑
28 nfv 1911 . . . . . . . . 9 𝑦 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2927, 28nfan 1896 . . . . . . . 8 𝑦(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
30 nfii1 5033 . . . . . . . . . . 11 𝑛 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3130nfcri 2894 . . . . . . . . . 10 𝑛 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
324, 31nfan 1896 . . . . . . . . 9 𝑛(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
33 simpll 767 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝜑)
34 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
35 eliinid 45050 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
3635adantll 714 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
378, 15eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3837adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3936, 38eleqtrd 2840 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥𝐴)
407fveq1d 6908 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
41403adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
42 simp3 1137 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → 𝑥𝐴)
43 fvmpt4 45181 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4442, 13, 43syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4541, 44eqtr2d 2775 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
4645breq1d 5157 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥𝐴) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4733, 34, 39, 46syl3anc 1370 . . . . . . . . 9 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4832, 47ralbida 3267 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∀𝑛𝑍 𝐵𝑦 ↔ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4929, 48rexbid 3271 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
502, 49rabbida 3460 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
5126, 50eqtrd 2774 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
523, 51eqtrid 2786 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
53 nfcv 2902 . . . . . . . . . . . 12 𝑛
54 nfra1 3281 . . . . . . . . . . . 12 𝑛𝑛𝑍 𝐵𝑦
5553, 54nfrexw 3310 . . . . . . . . . . 11 𝑛𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦
56 nfii1 5033 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝐴
5755, 56nfrabw 3472 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
583, 57nfcxfr 2900 . . . . . . . . 9 𝑛𝐷
5958nfcri 2894 . . . . . . . 8 𝑛 𝑥𝐷
604, 59nfan 1896 . . . . . . 7 𝑛(𝜑𝑥𝐷)
61 simpll 767 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝜑)
62 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑛𝑍)
63 rabidim1 3455 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} → 𝑥 𝑛𝑍 𝐴)
6463, 3eleq2s 2856 . . . . . . . . . 10 (𝑥𝐷𝑥 𝑛𝑍 𝐴)
65 eliinid 45050 . . . . . . . . . 10 ((𝑥 𝑛𝑍 𝐴𝑛𝑍) → 𝑥𝐴)
6664, 65sylan 580 . . . . . . . . 9 ((𝑥𝐷𝑛𝑍) → 𝑥𝐴)
6766adantll 714 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥𝐴)
6861, 62, 67, 45syl3anc 1370 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
6960, 68mpteq2da 5245 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍𝐵) = (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
7069rneqd 5951 . . . . 5 ((𝜑𝑥𝐷) → ran (𝑛𝑍𝐵) = ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
7170supeq1d 9483 . . . 4 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍𝐵), ℝ, < ) = sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
722, 52, 71mpteq12da 5232 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
731, 72eqtrid 2786 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
74 nfmpt1 5255 . . 3 𝑛(𝑛𝑍 ↦ (𝑥𝐴𝐵))
75 smfsupmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
76 smfsupmpt.z . . 3 𝑍 = (ℤ𝑀)
77 smfsupmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
784, 6fmptd2f 45177 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
79 eqid 2734 . . 3 {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦}
80 eqid 2734 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
8174, 20, 75, 76, 77, 78, 79, 80smfsup 46769 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
8273, 81eqeltrd 2838 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wnf 1779  wcel 2105  wral 3058  wrex 3067  {crab 3432   ciin 4996   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cfv 6562  supcsup 9477  cr 11151   < clt 11292  cle 11293  cz 12610  cuz 12875  SAlgcsalg 46263  SMblFncsmblfn 46650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-ac2 10500  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-ac 10153  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-ioo 13387  df-ioc 13388  df-ico 13389  df-fl 13828  df-rest 17468  df-topgen 17489  df-top 22915  df-bases 22968  df-salg 46264  df-salgen 46268  df-smblfn 46651
This theorem is referenced by:  smfinflem  46772
  Copyright terms: Public domain W3C validator