Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupmpt Structured version   Visualization version   GIF version

Theorem smfsupmpt 46813
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupmpt.n 𝑛𝜑
smfsupmpt.x 𝑥𝜑
smfsupmpt.y 𝑦𝜑
smfsupmpt.m (𝜑𝑀 ∈ ℤ)
smfsupmpt.z 𝑍 = (ℤ𝑀)
smfsupmpt.s (𝜑𝑆 ∈ SAlg)
smfsupmpt.b ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
smfsupmpt.f ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfsupmpt.d 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
smfsupmpt.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
Assertion
Ref Expression
smfsupmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐴(𝑛)   𝐵(𝑥,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)   𝑉(𝑥,𝑦,𝑛)

Proof of Theorem smfsupmpt
StepHypRef Expression
1 smfsupmpt.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
2 smfsupmpt.x . . . 4 𝑥𝜑
3 smfsupmpt.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
4 smfsupmpt.n . . . . . . . 8 𝑛𝜑
5 eqidd 2730 . . . . . . . . . . 11 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵)))
6 smfsupmpt.f . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
75, 6fvmpt2d 6981 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = (𝑥𝐴𝐵))
87dmeqd 5869 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = dom (𝑥𝐴𝐵))
9 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑍
109nfcri 2883 . . . . . . . . . . 11 𝑥 𝑛𝑍
112, 10nfan 1899 . . . . . . . . . 10 𝑥(𝜑𝑛𝑍)
12 eqid 2729 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
13 smfsupmpt.b . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
14133expa 1118 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
1511, 12, 14dmmptdf 45218 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
168, 15eqtr2d 2765 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐴 = dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
174, 16iineq2d 4979 . . . . . . 7 (𝜑 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
18 nfcv 2891 . . . . . . . 8 𝑥 𝑛𝑍 𝐴
19 nfmpt1 5206 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝐵)
209, 19nfmpt 5205 . . . . . . . . . . 11 𝑥(𝑛𝑍 ↦ (𝑥𝐴𝐵))
21 nfcv 2891 . . . . . . . . . . 11 𝑥𝑛
2220, 21nffv 6868 . . . . . . . . . 10 𝑥((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2322nfdm 5915 . . . . . . . . 9 𝑥dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
249, 23nfiin 4988 . . . . . . . 8 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2518, 24rabeqf 3440 . . . . . . 7 ( 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
2617, 25syl 17 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦})
27 smfsupmpt.y . . . . . . . . 9 𝑦𝜑
28 nfv 1914 . . . . . . . . 9 𝑦 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2927, 28nfan 1899 . . . . . . . 8 𝑦(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
30 nfii1 4993 . . . . . . . . . . 11 𝑛 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3130nfcri 2883 . . . . . . . . . 10 𝑛 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
324, 31nfan 1899 . . . . . . . . 9 𝑛(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
33 simpll 766 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝜑)
34 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
35 eliinid 45105 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
3635adantll 714 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
378, 15eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3837adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3936, 38eleqtrd 2830 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥𝐴)
407fveq1d 6860 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
41403adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
42 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → 𝑥𝐴)
43 fvmpt4 45232 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4442, 13, 43syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4541, 44eqtr2d 2765 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
4645breq1d 5117 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥𝐴) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4733, 34, 39, 46syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → (𝐵𝑦 ↔ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4832, 47ralbida 3248 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∀𝑛𝑍 𝐵𝑦 ↔ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
4929, 48rexbid 3251 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦))
502, 49rabbida 3432 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
5126, 50eqtrd 2764 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
523, 51eqtrid 2776 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦})
53 nfcv 2891 . . . . . . . . . . . 12 𝑛
54 nfra1 3261 . . . . . . . . . . . 12 𝑛𝑛𝑍 𝐵𝑦
5553, 54nfrexw 3287 . . . . . . . . . . 11 𝑛𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦
56 nfii1 4993 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝐴
5755, 56nfrabw 3443 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦}
583, 57nfcxfr 2889 . . . . . . . . 9 𝑛𝐷
5958nfcri 2883 . . . . . . . 8 𝑛 𝑥𝐷
604, 59nfan 1899 . . . . . . 7 𝑛(𝜑𝑥𝐷)
61 simpll 766 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝜑)
62 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑛𝑍)
63 rabidim1 3428 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦} → 𝑥 𝑛𝑍 𝐴)
6463, 3eleq2s 2846 . . . . . . . . . 10 (𝑥𝐷𝑥 𝑛𝑍 𝐴)
65 eliinid 45105 . . . . . . . . . 10 ((𝑥 𝑛𝑍 𝐴𝑛𝑍) → 𝑥𝐴)
6664, 65sylan 580 . . . . . . . . 9 ((𝑥𝐷𝑛𝑍) → 𝑥𝐴)
6766adantll 714 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥𝐴)
6861, 62, 67, 45syl3anc 1373 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
6960, 68mpteq2da 5199 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍𝐵) = (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
7069rneqd 5902 . . . . 5 ((𝜑𝑥𝐷) → ran (𝑛𝑍𝐵) = ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
7170supeq1d 9397 . . . 4 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍𝐵), ℝ, < ) = sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
722, 52, 71mpteq12da 5190 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
731, 72eqtrid 2776 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
74 nfmpt1 5206 . . 3 𝑛(𝑛𝑍 ↦ (𝑥𝐴𝐵))
75 smfsupmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
76 smfsupmpt.z . . 3 𝑍 = (ℤ𝑀)
77 smfsupmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
784, 6fmptd2f 45229 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
79 eqid 2729 . . 3 {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦}
80 eqid 2729 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
8174, 20, 75, 76, 77, 78, 79, 80smfsup 46812 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
8273, 81eqeltrd 2828 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  {crab 3405   ciin 4956   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cfv 6511  supcsup 9391  cr 11067   < clt 11208  cle 11209  cz 12529  cuz 12793  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ioc 13311  df-ico 13312  df-fl 13754  df-rest 17385  df-topgen 17406  df-top 22781  df-bases 22833  df-salg 46307  df-salgen 46311  df-smblfn 46694
This theorem is referenced by:  smfinflem  46815
  Copyright terms: Public domain W3C validator