Proof of Theorem smfsupmpt
Step | Hyp | Ref
| Expression |
1 | | smfsupmpt.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ))) |
3 | | smfsupmpt.x |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
4 | | smfsupmpt.d |
. . . . . . 7
⊢ 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} |
5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦}) |
6 | | smfsupmpt.n |
. . . . . . . . 9
⊢
Ⅎ𝑛𝜑 |
7 | | eqidd 2760 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))) |
8 | | smfsupmpt.f |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
9 | 7, 8 | fvmpt2d 6778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
10 | 9 | dmeqd 5752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
11 | | nfcv 2920 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑛 |
12 | | nfcv 2920 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑍 |
13 | 11, 12 | nfel 2934 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑛 ∈ 𝑍 |
14 | 3, 13 | nfan 1901 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ 𝑍) |
15 | | eqid 2759 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
16 | | smfsupmpt.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ SAlg) |
17 | 16 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
18 | | smfsupmpt.b |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
19 | 18 | 3expa 1116 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
20 | 14, 17, 19, 8 | smffmpt 43848 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
21 | 20 | fvmptelrn 6875 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
22 | 14, 15, 21 | dmmptdf 42268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
23 | | eqidd 2760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 = 𝐴) |
24 | 10, 22, 23 | 3eqtrrd 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 = dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
25 | 6, 24 | iineq2d 4910 |
. . . . . . . 8
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 𝐴 = ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
26 | | nfcv 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑥∩ 𝑛 ∈ 𝑍 𝐴 |
27 | | nfmpt1 5135 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
28 | 12, 27 | nfmpt 5134 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
29 | 28, 11 | nffv 6674 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
30 | 29 | nfdm 5798 |
. . . . . . . . . 10
⊢
Ⅎ𝑥dom
((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
31 | 12, 30 | nfiin 4918 |
. . . . . . . . 9
⊢
Ⅎ𝑥∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
32 | 26, 31 | rabeqf 3394 |
. . . . . . . 8
⊢ (∩ 𝑛 ∈ 𝑍 𝐴 = ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦}) |
33 | 25, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦}) |
34 | | smfsupmpt.y |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝜑 |
35 | | nfv 1916 |
. . . . . . . . . 10
⊢
Ⅎ𝑦 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
36 | 34, 35 | nfan 1901 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
37 | | nfcv 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑥 |
38 | | nfii1 4922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
39 | 37, 38 | nfel 2934 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
40 | 6, 39 | nfan 1901 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
41 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
42 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
43 | | eliinid 42166 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
44 | 43 | adantll 713 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
45 | 24 | eqcomd 2765 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = 𝐴) |
46 | 45 | adantlr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = 𝐴) |
47 | 44, 46 | eleqtrd 2855 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
48 | 9 | fveq1d 6666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
49 | 48 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
50 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
51 | 15 | fvmpt2 6776 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
52 | 50, 18, 51 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
53 | 49, 52 | eqtr2d 2795 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
54 | 53 | breq1d 5047 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑦 ↔ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
55 | 41, 42, 47, 54 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → (𝐵 ≤ 𝑦 ↔ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
56 | 40, 55 | ralbida 3159 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) → (∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
57 | 36, 56 | rexbid 3245 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦)) |
58 | 3, 57 | rabbida 3387 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦}) |
59 | 33, 58 | eqtrd 2794 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦}) |
60 | 5, 59 | eqtrd 2794 |
. . . . 5
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦}) |
61 | 3, 60 | alrimi 2212 |
. . . 4
⊢ (𝜑 → ∀𝑥 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦}) |
62 | | nfcv 2920 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛ℝ |
63 | | nfra1 3148 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 |
64 | 62, 63 | nfrex 3234 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 |
65 | | nfii1 4922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 𝐴 |
66 | 64, 65 | nfrabw 3304 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛{𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} |
67 | 4, 66 | nfcxfr 2918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝐷 |
68 | 37, 67 | nfel 2934 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 𝑥 ∈ 𝐷 |
69 | 6, 68 | nfan 1901 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
70 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
71 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
72 | 4 | eleq2i 2844 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦}) |
73 | 72 | biimpi 219 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦}) |
74 | | rabidim1 3299 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
75 | 73, 74 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
76 | 75 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
77 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
78 | | eliinid 42166 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
79 | 76, 77, 78 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
80 | 79 | adantll 713 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
81 | 53 | idi 1 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
82 | 70, 71, 80, 81 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
83 | 69, 82 | mpteq2da 5131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
84 | 83 | rneqd 5785 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ran (𝑛 ∈ 𝑍 ↦ 𝐵) = ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
85 | 84 | supeq1d 8957 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
86 | 85 | ex 416 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐷 → sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
87 | 3, 86 | ralrimi 3145 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
88 | | mpteq12f 5120 |
. . . 4
⊢
((∀𝑥 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ∧ ∀𝑥 ∈ 𝐷 sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) → (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
89 | 61, 87, 88 | syl2anc 587 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
90 | 2, 89 | eqtrd 2794 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
91 | | nfmpt1 5135 |
. . 3
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
92 | | smfsupmpt.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
93 | | smfsupmpt.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
94 | | eqid 2759 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
95 | 6, 8, 94 | fmptdf 6879 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)):𝑍⟶(SMblFn‘𝑆)) |
96 | | eqid 2759 |
. . 3
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} |
97 | | eqid 2759 |
. . 3
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
98 | 91, 28, 92, 93, 16, 95, 96, 97 | smfsup 43857 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈
(SMblFn‘𝑆)) |
99 | 90, 98 | eqeltrd 2853 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |