Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpteq12daOLD Structured version   Visualization version   GIF version

Theorem mpteq12daOLD 42787
Description: Obsolete version of mpteq12da 5159 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mpteq12daOLD.1 𝑥𝜑
mpteq12daOLD.2 (𝜑𝐴 = 𝐶)
mpteq12daOLD.3 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12daOLD (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))

Proof of Theorem mpteq12daOLD
StepHypRef Expression
1 mpteq12daOLD.1 . . 3 𝑥𝜑
2 mpteq12daOLD.2 . . 3 (𝜑𝐴 = 𝐶)
31, 2alrimi 2206 . 2 (𝜑 → ∀𝑥 𝐴 = 𝐶)
4 mpteq12daOLD.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
51, 4ralrimia 3430 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐷)
6 mpteq12f 5162 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
73, 5, 6syl2anc 584 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wnf 1786  wcel 2106  wral 3064  cmpt 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-opab 5137  df-mpt 5158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator