![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpteq12daOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mpteq12da 5251 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mpteq12daOLD.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq12daOLD.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12daOLD.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12daOLD | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12daOLD.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq12daOLD.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 1, 2 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥 𝐴 = 𝐶) |
4 | mpteq12daOLD.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
5 | 1, 4 | ralrimia 3264 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) |
6 | mpteq12f 5254 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | |
7 | 3, 5, 6 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |