Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptfnd Structured version   Visualization version   GIF version

Theorem mptfnd 45266
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
mptfnd.1 𝑥𝐴
mptfnd.2 𝑥𝜑
mptfnd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mptfnd (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)

Proof of Theorem mptfnd
StepHypRef Expression
1 mptfnd.2 . . 3 𝑥𝜑
2 mptfnd.3 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 412 . . . 4 (𝜑 → (𝑥𝐴𝐵𝑉))
4 elex 3480 . . . 4 (𝐵𝑉𝐵 ∈ V)
53, 4syl6 35 . . 3 (𝜑 → (𝑥𝐴𝐵 ∈ V))
61, 5ralrimi 3240 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ V)
7 mptfnd.1 . . 3 𝑥𝐴
87mptfnf 6673 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
96, 8sylib 218 1 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2108  wnfc 2883  wral 3051  Vcvv 3459  cmpt 5201   Fn wfn 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-fun 6533  df-fn 6534
This theorem is referenced by:  smflimsuplem2  46850
  Copyright terms: Public domain W3C validator