![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptfnd | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
mptfnd.1 | ⊢ Ⅎ𝑥𝐴 |
mptfnd.2 | ⊢ Ⅎ𝑥𝜑 |
mptfnd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
mptfnd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptfnd.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | mptfnd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | 2 | ex 413 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉)) |
4 | elex 3492 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ V)) |
6 | 1, 5 | ralrimi 3254 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
7 | mptfnd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
8 | 7 | mptfnf 6685 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
9 | 6, 8 | sylib 217 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ∀wral 3061 Vcvv 3474 ↦ cmpt 5231 Fn wfn 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-fun 6545 df-fn 6546 |
This theorem is referenced by: smflimsuplem2 45527 |
Copyright terms: Public domain | W3C validator |