Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptssALT Structured version   Visualization version   GIF version

Theorem mptssALT 30054
Description: Deduce subset relation of mapping-to function graphs from a subset relation of domains. Alternative proof of mptss 5704. (Contributed by Thierry Arnoux, 30-May-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mptssALT (𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mptssALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3814 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 604 . . 3 (𝐴𝐵 → ((𝑥𝐴𝑦 = 𝐶) → (𝑥𝐵𝑦 = 𝐶)))
32ssopab2dv 5241 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
4 df-mpt 4966 . 2 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
5 df-mpt 4966 . 2 (𝑥𝐵𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}
63, 4, 53sstr4g 3864 1 (𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wss 3791  {copab 4948  cmpt 4965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-in 3798  df-ss 3805  df-opab 4949  df-mpt 4966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator