| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnv2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.) |
| Ref | Expression |
|---|---|
| dfcnv2 | ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6091 | . 2 ⊢ Rel ◡𝑅 | |
| 2 | relxp 5672 | . . . 4 ⊢ Rel ({𝑥} × (◡𝑅 “ {𝑥})) | |
| 3 | 2 | rgenw 3055 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥})) |
| 4 | reliun 5795 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥}))) | |
| 5 | 3, 4 | mpbir 231 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) |
| 6 | vex 3463 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 7 | vex 3463 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | opeldm 5887 | . . . . . . . 8 ⊢ (〈𝑧, 𝑦〉 ∈ ◡𝑅 → 𝑧 ∈ dom ◡𝑅) |
| 9 | df-rn 5665 | . . . . . . . 8 ⊢ ran 𝑅 = dom ◡𝑅 | |
| 10 | 8, 9 | eleqtrrdi 2845 | . . . . . . 7 ⊢ (〈𝑧, 𝑦〉 ∈ ◡𝑅 → 𝑧 ∈ ran 𝑅) |
| 11 | ssel2 3953 | . . . . . . 7 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ 𝑧 ∈ ran 𝑅) → 𝑧 ∈ 𝐴) | |
| 12 | 10, 11 | sylan2 593 | . . . . . 6 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ 〈𝑧, 𝑦〉 ∈ ◡𝑅) → 𝑧 ∈ 𝐴) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 → 𝑧 ∈ 𝐴)) |
| 14 | 13 | pm4.71rd 562 | . . . 4 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ 〈𝑧, 𝑦〉 ∈ ◡𝑅))) |
| 15 | 6, 7 | elimasn 6077 | . . . . 5 ⊢ (𝑦 ∈ (◡𝑅 “ {𝑧}) ↔ 〈𝑧, 𝑦〉 ∈ ◡𝑅) |
| 16 | 15 | anbi2i 623 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})) ↔ (𝑧 ∈ 𝐴 ∧ 〈𝑧, 𝑦〉 ∈ ◡𝑅)) |
| 17 | 14, 16 | bitr4di 289 | . . 3 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})))) |
| 18 | sneq 4611 | . . . . 5 ⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) | |
| 19 | 18 | imaeq2d 6047 | . . . 4 ⊢ (𝑥 = 𝑧 → (◡𝑅 “ {𝑥}) = (◡𝑅 “ {𝑧})) |
| 20 | 19 | opeliunxp2 5818 | . . 3 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧}))) |
| 21 | 17, 20 | bitr4di 289 | . 2 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})))) |
| 22 | 1, 5, 21 | eqrelrdv 5771 | 1 ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 {csn 4601 〈cop 4607 ∪ ciun 4967 × cxp 5652 ◡ccnv 5653 dom cdm 5654 ran crn 5655 “ cima 5657 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-iun 4969 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: gsummpt2co 33042 |
| Copyright terms: Public domain | W3C validator |