![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnv2 | Structured version Visualization version GIF version |
Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.) |
Ref | Expression |
---|---|
dfcnv2 | ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6096 | . 2 ⊢ Rel ◡𝑅 | |
2 | relxp 5687 | . . . 4 ⊢ Rel ({𝑥} × (◡𝑅 “ {𝑥})) | |
3 | 2 | rgenw 3059 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥})) |
4 | reliun 5809 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥}))) | |
5 | 3, 4 | mpbir 230 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) |
6 | vex 3472 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
7 | vex 3472 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opeldm 5900 | . . . . . . . 8 ⊢ (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 → 𝑧 ∈ dom ◡𝑅) |
9 | df-rn 5680 | . . . . . . . 8 ⊢ ran 𝑅 = dom ◡𝑅 | |
10 | 8, 9 | eleqtrrdi 2838 | . . . . . . 7 ⊢ (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 → 𝑧 ∈ ran 𝑅) |
11 | ssel2 3972 | . . . . . . 7 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ 𝑧 ∈ ran 𝑅) → 𝑧 ∈ 𝐴) | |
12 | 10, 11 | sylan2 592 | . . . . . 6 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅) → 𝑧 ∈ 𝐴) |
13 | 12 | ex 412 | . . . . 5 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 → 𝑧 ∈ 𝐴)) |
14 | 13 | pm4.71rd 562 | . . . 4 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅))) |
15 | 6, 7 | elimasn 6081 | . . . . 5 ⊢ (𝑦 ∈ (◡𝑅 “ {𝑧}) ↔ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅) |
16 | 15 | anbi2i 622 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})) ↔ (𝑧 ∈ 𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅)) |
17 | 14, 16 | bitr4di 289 | . . 3 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})))) |
18 | sneq 4633 | . . . . 5 ⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) | |
19 | 18 | imaeq2d 6052 | . . . 4 ⊢ (𝑥 = 𝑧 → (◡𝑅 “ {𝑥}) = (◡𝑅 “ {𝑧})) |
20 | 19 | opeliunxp2 5831 | . . 3 ⊢ (⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧}))) |
21 | 17, 20 | bitr4di 289 | . 2 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 ↔ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})))) |
22 | 1, 5, 21 | eqrelrdv 5785 | 1 ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ⊆ wss 3943 {csn 4623 ⟨cop 4629 ∪ ciun 4990 × cxp 5667 ◡ccnv 5668 dom cdm 5669 ran crn 5670 “ cima 5672 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-iun 4992 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 |
This theorem is referenced by: gsummpt2co 32704 |
Copyright terms: Public domain | W3C validator |