Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnv2 Structured version   Visualization version   GIF version

Theorem dfcnv2 30733
Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.)
Assertion
Ref Expression
dfcnv2 (ran 𝑅𝐴𝑅 = 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfcnv2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5972 . 2 Rel 𝑅
2 relxp 5569 . . . 4 Rel ({𝑥} × (𝑅 “ {𝑥}))
32rgenw 3073 . . 3 𝑥𝐴 Rel ({𝑥} × (𝑅 “ {𝑥}))
4 reliun 5686 . . 3 (Rel 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})) ↔ ∀𝑥𝐴 Rel ({𝑥} × (𝑅 “ {𝑥})))
53, 4mpbir 234 . 2 Rel 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥}))
6 vex 3412 . . . . . . . . 9 𝑧 ∈ V
7 vex 3412 . . . . . . . . 9 𝑦 ∈ V
86, 7opeldm 5776 . . . . . . . 8 (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧 ∈ dom 𝑅)
9 df-rn 5562 . . . . . . . 8 ran 𝑅 = dom 𝑅
108, 9eleqtrrdi 2849 . . . . . . 7 (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧 ∈ ran 𝑅)
11 ssel2 3895 . . . . . . 7 ((ran 𝑅𝐴𝑧 ∈ ran 𝑅) → 𝑧𝐴)
1210, 11sylan2 596 . . . . . 6 ((ran 𝑅𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅) → 𝑧𝐴)
1312ex 416 . . . . 5 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧𝐴))
1413pm4.71rd 566 . . . 4 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ (𝑧𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅)))
156, 7elimasn 5957 . . . . 5 (𝑦 ∈ (𝑅 “ {𝑧}) ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑅)
1615anbi2i 626 . . . 4 ((𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧})) ↔ (𝑧𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅))
1714, 16bitr4di 292 . . 3 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ (𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧}))))
18 sneq 4551 . . . . 5 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1918imaeq2d 5929 . . . 4 (𝑥 = 𝑧 → (𝑅 “ {𝑥}) = (𝑅 “ {𝑧}))
2019opeliunxp2 5707 . . 3 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})) ↔ (𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧})))
2117, 20bitr4di 292 . 2 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥}))))
221, 5, 21eqrelrdv 5662 1 (ran 𝑅𝐴𝑅 = 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866  {csn 4541  cop 4547   ciun 4904   × cxp 5549  ccnv 5550  dom cdm 5551  ran crn 5552  cima 5554  Rel wrel 5556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-iun 4906  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564
This theorem is referenced by:  gsummpt2co  31027
  Copyright terms: Public domain W3C validator