Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnv2 Structured version   Visualization version   GIF version

Theorem dfcnv2 32694
Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.)
Assertion
Ref Expression
dfcnv2 (ran 𝑅𝐴𝑅 = 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfcnv2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6134 . 2 Rel 𝑅
2 relxp 5718 . . . 4 Rel ({𝑥} × (𝑅 “ {𝑥}))
32rgenw 3071 . . 3 𝑥𝐴 Rel ({𝑥} × (𝑅 “ {𝑥}))
4 reliun 5840 . . 3 (Rel 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})) ↔ ∀𝑥𝐴 Rel ({𝑥} × (𝑅 “ {𝑥})))
53, 4mpbir 231 . 2 Rel 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥}))
6 vex 3492 . . . . . . . . 9 𝑧 ∈ V
7 vex 3492 . . . . . . . . 9 𝑦 ∈ V
86, 7opeldm 5932 . . . . . . . 8 (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧 ∈ dom 𝑅)
9 df-rn 5711 . . . . . . . 8 ran 𝑅 = dom 𝑅
108, 9eleqtrrdi 2855 . . . . . . 7 (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧 ∈ ran 𝑅)
11 ssel2 4003 . . . . . . 7 ((ran 𝑅𝐴𝑧 ∈ ran 𝑅) → 𝑧𝐴)
1210, 11sylan2 592 . . . . . 6 ((ran 𝑅𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅) → 𝑧𝐴)
1312ex 412 . . . . 5 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧𝐴))
1413pm4.71rd 562 . . . 4 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ (𝑧𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅)))
156, 7elimasn 6119 . . . . 5 (𝑦 ∈ (𝑅 “ {𝑧}) ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑅)
1615anbi2i 622 . . . 4 ((𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧})) ↔ (𝑧𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅))
1714, 16bitr4di 289 . . 3 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ (𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧}))))
18 sneq 4658 . . . . 5 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1918imaeq2d 6089 . . . 4 (𝑥 = 𝑧 → (𝑅 “ {𝑥}) = (𝑅 “ {𝑧}))
2019opeliunxp2 5863 . . 3 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})) ↔ (𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧})))
2117, 20bitr4di 289 . 2 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥}))))
221, 5, 21eqrelrdv 5816 1 (ran 𝑅𝐴𝑅 = 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  {csn 4648  cop 4654   ciun 5015   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-iun 5017  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  gsummpt2co  33031
  Copyright terms: Public domain W3C validator