![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnv2 | Structured version Visualization version GIF version |
Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.) |
Ref | Expression |
---|---|
dfcnv2 | ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6100 | . 2 ⊢ Rel ◡𝑅 | |
2 | relxp 5693 | . . . 4 ⊢ Rel ({𝑥} × (◡𝑅 “ {𝑥})) | |
3 | 2 | rgenw 3065 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥})) |
4 | reliun 5814 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥}))) | |
5 | 3, 4 | mpbir 230 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) |
6 | vex 3478 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
7 | vex 3478 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opeldm 5905 | . . . . . . . 8 ⊢ (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 → 𝑧 ∈ dom ◡𝑅) |
9 | df-rn 5686 | . . . . . . . 8 ⊢ ran 𝑅 = dom ◡𝑅 | |
10 | 8, 9 | eleqtrrdi 2844 | . . . . . . 7 ⊢ (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 → 𝑧 ∈ ran 𝑅) |
11 | ssel2 3976 | . . . . . . 7 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ 𝑧 ∈ ran 𝑅) → 𝑧 ∈ 𝐴) | |
12 | 10, 11 | sylan2 593 | . . . . . 6 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅) → 𝑧 ∈ 𝐴) |
13 | 12 | ex 413 | . . . . 5 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 → 𝑧 ∈ 𝐴)) |
14 | 13 | pm4.71rd 563 | . . . 4 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅))) |
15 | 6, 7 | elimasn 6085 | . . . . 5 ⊢ (𝑦 ∈ (◡𝑅 “ {𝑧}) ↔ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅) |
16 | 15 | anbi2i 623 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})) ↔ (𝑧 ∈ 𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ ◡𝑅)) |
17 | 14, 16 | bitr4di 288 | . . 3 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})))) |
18 | sneq 4637 | . . . . 5 ⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) | |
19 | 18 | imaeq2d 6057 | . . . 4 ⊢ (𝑥 = 𝑧 → (◡𝑅 “ {𝑥}) = (◡𝑅 “ {𝑧})) |
20 | 19 | opeliunxp2 5836 | . . 3 ⊢ (⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧}))) |
21 | 17, 20 | bitr4di 288 | . 2 ⊢ (ran 𝑅 ⊆ 𝐴 → (⟨𝑧, 𝑦⟩ ∈ ◡𝑅 ↔ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})))) |
22 | 1, 5, 21 | eqrelrdv 5790 | 1 ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 {csn 4627 ⟨cop 4633 ∪ ciun 4996 × cxp 5673 ◡ccnv 5674 dom cdm 5675 ran crn 5676 “ cima 5678 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-iun 4998 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: gsummpt2co 32187 |
Copyright terms: Public domain | W3C validator |