Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptss | Structured version Visualization version GIF version |
Description: Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
mptss | ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmpt 5942 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
2 | resss 5913 | . 2 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶) | |
3 | 1, 2 | eqsstrrdi 3980 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3891 ↦ cmpt 5161 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-opab 5141 df-mpt 5162 df-xp 5594 df-rel 5595 df-res 5600 |
This theorem is referenced by: tdeglem4 25205 carsgclctunlem2 32265 sge0less 43884 |
Copyright terms: Public domain | W3C validator |