![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptss | Structured version Visualization version GIF version |
Description: Sufficient condition for inclusion in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
mptss | ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmpt 5699 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
2 | resss 5671 | . 2 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶) | |
3 | 1, 2 | syl6eqssr 3874 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3791 ↦ cmpt 4965 ↾ cres 5357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-opab 4949 df-mpt 4966 df-xp 5361 df-rel 5362 df-res 5367 |
This theorem is referenced by: carsgclctunlem2 30993 sge0less 41525 |
Copyright terms: Public domain | W3C validator |