![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptss | Structured version Visualization version GIF version |
Description: Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
mptss | ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmpt 6046 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
2 | resss 6011 | . 2 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶) | |
3 | 1, 2 | eqsstrrdi 4035 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 ↦ cmpt 5236 ↾ cres 5684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-opab 5216 df-mpt 5237 df-xp 5688 df-rel 5689 df-res 5694 |
This theorem is referenced by: tdeglem4 26086 carsgclctunlem2 34153 mhphf 42069 sge0less 46013 |
Copyright terms: Public domain | W3C validator |