MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptss Structured version   Visualization version   GIF version

Theorem mptss 6067
Description: Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
mptss (𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mptss
StepHypRef Expression
1 resmpt 6062 . 2 (𝐴𝐵 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
2 resss 6026 . 2 ((𝑥𝐵𝐶) ↾ 𝐴) ⊆ (𝑥𝐵𝐶)
31, 2eqsstrrdi 4054 1 (𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3966  cmpt 5234  cres 5695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-opab 5214  df-mpt 5235  df-xp 5699  df-rel 5700  df-res 5705
This theorem is referenced by:  tdeglem4  26125  carsgclctunlem2  34315  mhphf  42600  sge0less  46376
  Copyright terms: Public domain W3C validator