MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptss Structured version   Visualization version   GIF version

Theorem mptss 6051
Description: Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
mptss (𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mptss
StepHypRef Expression
1 resmpt 6046 . 2 (𝐴𝐵 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
2 resss 6011 . 2 ((𝑥𝐵𝐶) ↾ 𝐴) ⊆ (𝑥𝐵𝐶)
31, 2eqsstrrdi 4035 1 (𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3947  cmpt 5236  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-opab 5216  df-mpt 5237  df-xp 5688  df-rel 5689  df-res 5694
This theorem is referenced by:  tdeglem4  26086  carsgclctunlem2  34153  mhphf  42069  sge0less  46013
  Copyright terms: Public domain W3C validator