MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nabbi Structured version   Visualization version   GIF version

Theorem nabbi 3113
Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nabbi (∃𝑥(𝜑 ↔ ¬ 𝜓) ↔ {𝑥𝜑} ≠ {𝑥𝜓})

Proof of Theorem nabbi
StepHypRef Expression
1 df-ne 3012 . 2 ({𝑥𝜑} ≠ {𝑥𝜓} ↔ ¬ {𝑥𝜑} = {𝑥𝜓})
2 exnal 1828 . . . 4 (∃𝑥 ¬ (𝜑𝜓) ↔ ¬ ∀𝑥(𝜑𝜓))
3 xor3 387 . . . . 5 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
43exbii 1849 . . . 4 (∃𝑥 ¬ (𝜑𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
52, 4bitr3i 280 . . 3 (¬ ∀𝑥(𝜑𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
6 abbi 2889 . . 3 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
75, 6xchnxbi 335 . 2 (¬ {𝑥𝜑} = {𝑥𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
81, 7bitr2i 279 1 (∃𝑥(𝜑 ↔ ¬ 𝜓) ↔ {𝑥𝜑} ≠ {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wal 1536   = wceq 1538  wex 1781  {cab 2800  wne 3011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-ne 3012
This theorem is referenced by:  suppvalbr  7821
  Copyright terms: Public domain W3C validator