MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nabbi Structured version   Visualization version   GIF version

Theorem nabbi 3046
Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nabbi (∃𝑥(𝜑 ↔ ¬ 𝜓) ↔ {𝑥𝜑} ≠ {𝑥𝜓})

Proof of Theorem nabbi
StepHypRef Expression
1 df-ne 2943 . 2 ({𝑥𝜑} ≠ {𝑥𝜓} ↔ ¬ {𝑥𝜑} = {𝑥𝜓})
2 exnal 1830 . . . 4 (∃𝑥 ¬ (𝜑𝜓) ↔ ¬ ∀𝑥(𝜑𝜓))
3 xor3 383 . . . . 5 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
43exbii 1851 . . . 4 (∃𝑥 ¬ (𝜑𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
52, 4bitr3i 276 . . 3 (¬ ∀𝑥(𝜑𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
6 abbi 2811 . . 3 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
75, 6xchnxbi 331 . 2 (¬ {𝑥𝜑} = {𝑥𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
81, 7bitr2i 275 1 (∃𝑥(𝜑 ↔ ¬ 𝜓) ↔ {𝑥𝜑} ≠ {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wex 1783  {cab 2715  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-ne 2943
This theorem is referenced by:  suppvalbr  7952
  Copyright terms: Public domain W3C validator