| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunidALT2 | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfuni 4863. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfunidALT2.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfunidALT2 | ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2902 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} | |
| 2 | 1 | nfuni 4863 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
| 3 | nfunidALT2.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | nfnfc1 2897 | . . . 4 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 5 | abidnf 3656 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} = 𝐴) | |
| 6 | 5 | unieqd 4869 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → ∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} = ∪ 𝐴) |
| 7 | 4, 6 | nfceqdf 2890 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} ↔ Ⅎ𝑥∪ 𝐴)) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ (𝜑 → (Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} ↔ Ⅎ𝑥∪ 𝐴)) |
| 9 | 2, 8 | mpbii 233 | 1 ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-uni 4857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |