Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunidALT2 Structured version   Visualization version   GIF version

Theorem nfunidALT2 38925
Description: Deduction version of nfuni 4938. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfunidALT2.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunidALT2 (𝜑𝑥 𝐴)

Proof of Theorem nfunidALT2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2916 . . 3 𝑥{𝑦 ∣ ∀𝑥 𝑦𝐴}
21nfuni 4938 . 2 𝑥 {𝑦 ∣ ∀𝑥 𝑦𝐴}
3 nfunidALT2.1 . . 3 (𝜑𝑥𝐴)
4 nfnfc1 2911 . . . 4 𝑥𝑥𝐴
5 abidnf 3724 . . . . 5 (𝑥𝐴 → {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
65unieqd 4944 . . . 4 (𝑥𝐴 {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
74, 6nfceqdf 2904 . . 3 (𝑥𝐴 → (𝑥 {𝑦 ∣ ∀𝑥 𝑦𝐴} ↔ 𝑥 𝐴))
83, 7syl 17 . 2 (𝜑 → (𝑥 {𝑦 ∣ ∀𝑥 𝑦𝐴} ↔ 𝑥 𝐴))
92, 8mpbii 233 1 (𝜑𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  {cab 2717  wnfc 2893   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-uni 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator