| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfop | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopif 4830 | . 2 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
| 2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
| 4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 7 | 2 | nfsn 4667 | . . . 4 ⊢ Ⅎ𝑥{𝐴} |
| 8 | 2, 4 | nfpr 4652 | . . . 4 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| 9 | 7, 8 | nfpr 4652 | . . 3 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
| 10 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥∅ | |
| 11 | 6, 9, 10 | nfif 4515 | . 2 ⊢ Ⅎ𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) |
| 12 | 1, 11 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3444 ∅c0 4292 ifcif 4484 {csn 4585 {cpr 4587 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: nfopd 4850 moop2 5457 iunopeqop 5476 fliftfuns 7271 dfmpo 8058 qliftfuns 8754 xpf1o 9080 nfseq 13952 txcnp 23540 cnmpt1t 23585 cnmpt2t 23593 flfcnp2 23927 nosupbnd2 27661 noinfbnd2 27676 nfseqs 28221 bnj958 34923 bnj1000 34924 bnj1446 35028 bnj1447 35029 bnj1448 35030 bnj1466 35036 bnj1467 35037 bnj1519 35048 bnj1520 35049 bnj1529 35053 poimirlem26 37633 nfopdALT 38957 nfaov 47173 |
| Copyright terms: Public domain | W3C validator |