![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfop | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 | ⊢ Ⅎ𝑥𝐴 |
nfop.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif 4894 | . 2 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfel1 2925 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfel1 2925 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | 3, 5 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) |
7 | 2 | nfsn 4732 | . . . 4 ⊢ Ⅎ𝑥{𝐴} |
8 | 2, 4 | nfpr 4715 | . . . 4 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
9 | 7, 8 | nfpr 4715 | . . 3 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
10 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑥∅ | |
11 | 6, 9, 10 | nfif 4578 | . 2 ⊢ Ⅎ𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) |
12 | 1, 11 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Ⅎwnfc 2893 Vcvv 3488 ∅c0 4352 ifcif 4548 {csn 4648 {cpr 4650 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: nfopd 4914 moop2 5521 iunopeqop 5540 fliftfuns 7350 dfmpo 8143 qliftfuns 8862 xpf1o 9205 nfseq 14062 txcnp 23649 cnmpt1t 23694 cnmpt2t 23702 flfcnp2 24036 nosupbnd2 27779 noinfbnd2 27794 nfseqs 28311 bnj958 34916 bnj1000 34917 bnj1446 35021 bnj1447 35022 bnj1448 35023 bnj1466 35029 bnj1467 35030 bnj1519 35041 bnj1520 35042 bnj1529 35046 poimirlem26 37606 nfopdALT 38927 nfaov 47094 |
Copyright terms: Public domain | W3C validator |