MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfop Structured version   Visualization version   GIF version

Theorem nfop 4838
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1 𝑥𝐴
nfop.2 𝑥𝐵
Assertion
Ref Expression
nfop 𝑥𝐴, 𝐵

Proof of Theorem nfop
StepHypRef Expression
1 dfopif 4819 . 2 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
2 nfop.1 . . . . 5 𝑥𝐴
32nfel1 2911 . . . 4 𝑥 𝐴 ∈ V
4 nfop.2 . . . . 5 𝑥𝐵
54nfel1 2911 . . . 4 𝑥 𝐵 ∈ V
63, 5nfan 1900 . . 3 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V)
72nfsn 4657 . . . 4 𝑥{𝐴}
82, 4nfpr 4642 . . . 4 𝑥{𝐴, 𝐵}
97, 8nfpr 4642 . . 3 𝑥{{𝐴}, {𝐴, 𝐵}}
10 nfcv 2894 . . 3 𝑥
116, 9, 10nfif 4503 . 2 𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
121, 11nfcxfr 2892 1 𝑥𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  wnfc 2879  Vcvv 3436  c0 4280  ifcif 4472  {csn 4573  {cpr 4575  cop 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580
This theorem is referenced by:  nfopd  4839  moop2  5440  iunopeqop  5459  fliftfuns  7248  dfmpo  8032  qliftfuns  8728  xpf1o  9052  nfseq  13918  txcnp  23535  cnmpt1t  23580  cnmpt2t  23588  flfcnp2  23922  nosupbnd2  27655  noinfbnd2  27670  nfseqs  28217  bnj958  34952  bnj1000  34953  bnj1446  35057  bnj1447  35058  bnj1448  35059  bnj1466  35065  bnj1467  35066  bnj1519  35077  bnj1520  35078  bnj1529  35082  poimirlem26  37696  nfopdALT  39080  nfaov  47289
  Copyright terms: Public domain W3C validator