| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfop | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopif 4821 | . 2 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
| 2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
| 4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 7 | 2 | nfsn 4659 | . . . 4 ⊢ Ⅎ𝑥{𝐴} |
| 8 | 2, 4 | nfpr 4644 | . . . 4 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| 9 | 7, 8 | nfpr 4644 | . . 3 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
| 10 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥∅ | |
| 11 | 6, 9, 10 | nfif 4507 | . 2 ⊢ Ⅎ𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) |
| 12 | 1, 11 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3436 ∅c0 4284 ifcif 4476 {csn 4577 {cpr 4579 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 |
| This theorem is referenced by: nfopd 4841 moop2 5445 iunopeqop 5464 fliftfuns 7251 dfmpo 8035 qliftfuns 8731 xpf1o 9056 nfseq 13918 txcnp 23505 cnmpt1t 23550 cnmpt2t 23558 flfcnp2 23892 nosupbnd2 27626 noinfbnd2 27641 nfseqs 28186 bnj958 34913 bnj1000 34914 bnj1446 35018 bnj1447 35019 bnj1448 35020 bnj1466 35026 bnj1467 35027 bnj1519 35038 bnj1520 35039 bnj1529 35043 poimirlem26 37636 nfopdALT 38960 nfaov 47173 |
| Copyright terms: Public domain | W3C validator |