![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfop | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 | ⊢ Ⅎ𝑥𝐴 |
nfop.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif 4870 | . 2 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfel1 2918 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfel1 2918 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | 3, 5 | nfan 1901 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) |
7 | 2 | nfsn 4711 | . . . 4 ⊢ Ⅎ𝑥{𝐴} |
8 | 2, 4 | nfpr 4694 | . . . 4 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
9 | 7, 8 | nfpr 4694 | . . 3 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
10 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑥∅ | |
11 | 6, 9, 10 | nfif 4558 | . 2 ⊢ Ⅎ𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) |
12 | 1, 11 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2105 Ⅎwnfc 2882 Vcvv 3473 ∅c0 4322 ifcif 4528 {csn 4628 {cpr 4630 〈cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: nfopd 4890 moop2 5502 iunopeqop 5521 fliftfuns 7314 dfmpo 8093 qliftfuns 8804 xpf1o 9145 nfseq 13983 txcnp 23444 cnmpt1t 23489 cnmpt2t 23497 flfcnp2 23831 nosupbnd2 27562 noinfbnd2 27577 bnj958 34415 bnj1000 34416 bnj1446 34520 bnj1447 34521 bnj1448 34522 bnj1466 34528 bnj1467 34529 bnj1519 34540 bnj1520 34541 bnj1529 34545 poimirlem26 36978 nfopdALT 38305 nfaov 46346 |
Copyright terms: Public domain | W3C validator |