MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfop Structured version   Visualization version   GIF version

Theorem nfop 4913
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1 𝑥𝐴
nfop.2 𝑥𝐵
Assertion
Ref Expression
nfop 𝑥𝐴, 𝐵

Proof of Theorem nfop
StepHypRef Expression
1 dfopif 4894 . 2 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
2 nfop.1 . . . . 5 𝑥𝐴
32nfel1 2925 . . . 4 𝑥 𝐴 ∈ V
4 nfop.2 . . . . 5 𝑥𝐵
54nfel1 2925 . . . 4 𝑥 𝐵 ∈ V
63, 5nfan 1898 . . 3 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V)
72nfsn 4732 . . . 4 𝑥{𝐴}
82, 4nfpr 4715 . . . 4 𝑥{𝐴, 𝐵}
97, 8nfpr 4715 . . 3 𝑥{{𝐴}, {𝐴, 𝐵}}
10 nfcv 2908 . . 3 𝑥
116, 9, 10nfif 4578 . 2 𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
121, 11nfcxfr 2906 1 𝑥𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2893  Vcvv 3488  c0 4352  ifcif 4548  {csn 4648  {cpr 4650  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655
This theorem is referenced by:  nfopd  4914  moop2  5521  iunopeqop  5540  fliftfuns  7350  dfmpo  8143  qliftfuns  8862  xpf1o  9205  nfseq  14062  txcnp  23649  cnmpt1t  23694  cnmpt2t  23702  flfcnp2  24036  nosupbnd2  27779  noinfbnd2  27794  nfseqs  28311  bnj958  34916  bnj1000  34917  bnj1446  35021  bnj1447  35022  bnj1448  35023  bnj1466  35029  bnj1467  35030  bnj1519  35041  bnj1520  35042  bnj1529  35046  poimirlem26  37606  nfopdALT  38927  nfaov  47094
  Copyright terms: Public domain W3C validator