| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfop | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopif 4837 | . 2 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
| 2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfel1 2909 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
| 4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfel1 2909 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 7 | 2 | nfsn 4674 | . . . 4 ⊢ Ⅎ𝑥{𝐴} |
| 8 | 2, 4 | nfpr 4659 | . . . 4 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| 9 | 7, 8 | nfpr 4659 | . . 3 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
| 10 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥∅ | |
| 11 | 6, 9, 10 | nfif 4522 | . 2 ⊢ Ⅎ𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) |
| 12 | 1, 11 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2877 Vcvv 3450 ∅c0 4299 ifcif 4491 {csn 4592 {cpr 4594 〈cop 4598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 |
| This theorem is referenced by: nfopd 4857 moop2 5465 iunopeqop 5484 fliftfuns 7292 dfmpo 8084 qliftfuns 8780 xpf1o 9109 nfseq 13983 txcnp 23514 cnmpt1t 23559 cnmpt2t 23567 flfcnp2 23901 nosupbnd2 27635 noinfbnd2 27650 nfseqs 28188 bnj958 34937 bnj1000 34938 bnj1446 35042 bnj1447 35043 bnj1448 35044 bnj1466 35050 bnj1467 35051 bnj1519 35062 bnj1520 35063 bnj1529 35067 poimirlem26 37647 nfopdALT 38971 nfaov 47184 |
| Copyright terms: Public domain | W3C validator |