![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfop | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 | ⊢ Ⅎ𝑥𝐴 |
nfop.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfop | ⊢ Ⅎ𝑥⟨𝐴, 𝐵⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif 4871 | . 2 ⊢ ⟨𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfel1 2920 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfel1 2920 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | 3, 5 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) |
7 | 2 | nfsn 4712 | . . . 4 ⊢ Ⅎ𝑥{𝐴} |
8 | 2, 4 | nfpr 4695 | . . . 4 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
9 | 7, 8 | nfpr 4695 | . . 3 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
10 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑥∅ | |
11 | 6, 9, 10 | nfif 4559 | . 2 ⊢ Ⅎ𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) |
12 | 1, 11 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥⟨𝐴, 𝐵⟩ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∈ wcel 2107 Ⅎwnfc 2884 Vcvv 3475 ∅c0 4323 ifcif 4529 {csn 4629 {cpr 4631 ⟨cop 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 |
This theorem is referenced by: nfopd 4891 moop2 5503 iunopeqop 5522 fliftfuns 7311 dfmpo 8088 qliftfuns 8798 xpf1o 9139 nfseq 13976 txcnp 23124 cnmpt1t 23169 cnmpt2t 23177 flfcnp2 23511 nosupbnd2 27219 noinfbnd2 27234 bnj958 33951 bnj1000 33952 bnj1446 34056 bnj1447 34057 bnj1448 34058 bnj1466 34064 bnj1467 34065 bnj1519 34076 bnj1520 34077 bnj1529 34081 poimirlem26 36514 nfopdALT 37841 nfaov 45887 |
Copyright terms: Public domain | W3C validator |