MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfop Structured version   Visualization version   GIF version

Theorem nfop 4817
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1 𝑥𝐴
nfop.2 𝑥𝐵
Assertion
Ref Expression
nfop 𝑥𝐴, 𝐵

Proof of Theorem nfop
StepHypRef Expression
1 dfopif 4797 . 2 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
2 nfop.1 . . . . 5 𝑥𝐴
32nfel1 2922 . . . 4 𝑥 𝐴 ∈ V
4 nfop.2 . . . . 5 𝑥𝐵
54nfel1 2922 . . . 4 𝑥 𝐵 ∈ V
63, 5nfan 1903 . . 3 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V)
72nfsn 4640 . . . 4 𝑥{𝐴}
82, 4nfpr 4623 . . . 4 𝑥{𝐴, 𝐵}
97, 8nfpr 4623 . . 3 𝑥{{𝐴}, {𝐴, 𝐵}}
10 nfcv 2906 . . 3 𝑥
116, 9, 10nfif 4486 . 2 𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
121, 11nfcxfr 2904 1 𝑥𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2886  Vcvv 3422  c0 4253  ifcif 4456  {csn 4558  {cpr 4560  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  nfopd  4818  moop2  5410  iunopeqop  5429  fliftfuns  7165  dfmpo  7913  qliftfuns  8551  xpf1o  8875  nfseq  13659  txcnp  22679  cnmpt1t  22724  cnmpt2t  22732  flfcnp2  23066  bnj958  32820  bnj1000  32821  bnj1446  32925  bnj1447  32926  bnj1448  32927  bnj1466  32933  bnj1467  32934  bnj1519  32945  bnj1520  32946  bnj1529  32950  nosupbnd2  33846  noinfbnd2  33861  poimirlem26  35730  nfopdALT  36912  nfaov  44558
  Copyright terms: Public domain W3C validator