MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfop Structured version   Visualization version   GIF version

Theorem nfop 4865
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1 𝑥𝐴
nfop.2 𝑥𝐵
Assertion
Ref Expression
nfop 𝑥𝐴, 𝐵

Proof of Theorem nfop
StepHypRef Expression
1 dfopif 4846 . 2 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
2 nfop.1 . . . . 5 𝑥𝐴
32nfel1 2915 . . . 4 𝑥 𝐴 ∈ V
4 nfop.2 . . . . 5 𝑥𝐵
54nfel1 2915 . . . 4 𝑥 𝐵 ∈ V
63, 5nfan 1899 . . 3 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V)
72nfsn 4683 . . . 4 𝑥{𝐴}
82, 4nfpr 4668 . . . 4 𝑥{𝐴, 𝐵}
97, 8nfpr 4668 . . 3 𝑥{{𝐴}, {𝐴, 𝐵}}
10 nfcv 2898 . . 3 𝑥
116, 9, 10nfif 4531 . 2 𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
121, 11nfcxfr 2896 1 𝑥𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2883  Vcvv 3459  c0 4308  ifcif 4500  {csn 4601  {cpr 4603  cop 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608
This theorem is referenced by:  nfopd  4866  moop2  5477  iunopeqop  5496  fliftfuns  7307  dfmpo  8101  qliftfuns  8818  xpf1o  9153  nfseq  14029  txcnp  23558  cnmpt1t  23603  cnmpt2t  23611  flfcnp2  23945  nosupbnd2  27680  noinfbnd2  27695  nfseqs  28233  bnj958  34971  bnj1000  34972  bnj1446  35076  bnj1447  35077  bnj1448  35078  bnj1466  35084  bnj1467  35085  bnj1519  35096  bnj1520  35097  bnj1529  35101  poimirlem26  37670  nfopdALT  38989  nfaov  47208
  Copyright terms: Public domain W3C validator