| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfop | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopif 4834 | . 2 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
| 2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
| 4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 7 | 2 | nfsn 4671 | . . . 4 ⊢ Ⅎ𝑥{𝐴} |
| 8 | 2, 4 | nfpr 4656 | . . . 4 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| 9 | 7, 8 | nfpr 4656 | . . 3 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
| 10 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥∅ | |
| 11 | 6, 9, 10 | nfif 4519 | . 2 ⊢ Ⅎ𝑥if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) |
| 12 | 1, 11 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3447 ∅c0 4296 ifcif 4488 {csn 4589 {cpr 4591 〈cop 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 |
| This theorem is referenced by: nfopd 4854 moop2 5462 iunopeqop 5481 fliftfuns 7289 dfmpo 8081 qliftfuns 8777 xpf1o 9103 nfseq 13976 txcnp 23507 cnmpt1t 23552 cnmpt2t 23560 flfcnp2 23894 nosupbnd2 27628 noinfbnd2 27643 nfseqs 28181 bnj958 34930 bnj1000 34931 bnj1446 35035 bnj1447 35036 bnj1448 35037 bnj1466 35043 bnj1467 35044 bnj1519 35055 bnj1520 35056 bnj1529 35060 poimirlem26 37640 nfopdALT 38964 nfaov 47180 |
| Copyright terms: Public domain | W3C validator |