![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfopd | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nfop 4889. This shows how the deduction version of a not-free theorem such as nfop 4889 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
Ref | Expression |
---|---|
nfopd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfopd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfopd | ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2900 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
2 | nfaba1 2900 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
3 | 1, 2 | nfop 4889 | . 2 ⊢ Ⅎ𝑥〈{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}〉 |
4 | nfopd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | nfopd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | nfnfc1 2895 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
7 | nfnfc1 2895 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
9 | abidnf 3697 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
10 | 9 | adantr 479 | . . . . 5 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
11 | abidnf 3697 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
12 | 11 | adantl 480 | . . . . 5 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) |
13 | 10, 12 | opeq12d 4881 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 〈{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}〉 = 〈𝐴, 𝐵〉) |
14 | 8, 13 | nfceqdf 2887 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥〈{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}〉 ↔ Ⅎ𝑥〈𝐴, 𝐵〉)) |
15 | 4, 5, 14 | syl2anc 582 | . 2 ⊢ (𝜑 → (Ⅎ𝑥〈{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}〉 ↔ Ⅎ𝑥〈𝐴, 𝐵〉)) |
16 | 3, 15 | mpbii 232 | 1 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1532 = wceq 1534 ∈ wcel 2099 {cab 2703 Ⅎwnfc 2876 〈cop 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rab 3421 df-v 3466 df-dif 3951 df-un 3953 df-ss 3965 df-nul 4325 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 |
This theorem is referenced by: nfbrd 5191 dfid3 5575 nfovd 7444 |
Copyright terms: Public domain | W3C validator |