MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopd Structured version   Visualization version   GIF version

Theorem nfopd 4823
Description: Deduction version of bound-variable hypothesis builder nfop 4822. This shows how the deduction version of a not-free theorem such as nfop 4822 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
Hypotheses
Ref Expression
nfopd.2 (𝜑𝑥𝐴)
nfopd.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfopd (𝜑𝑥𝐴, 𝐵⟩)

Proof of Theorem nfopd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2989 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
2 nfaba1 2989 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
31, 2nfop 4822 . 2 𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩
4 nfopd.2 . . 3 (𝜑𝑥𝐴)
5 nfopd.3 . . 3 (𝜑𝑥𝐵)
6 nfnfc1 2983 . . . . 5 𝑥𝑥𝐴
7 nfnfc1 2983 . . . . 5 𝑥𝑥𝐵
86, 7nfan 1899 . . . 4 𝑥(𝑥𝐴𝑥𝐵)
9 abidnf 3697 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
109adantr 483 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
11 abidnf 3697 . . . . . 6 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1211adantl 484 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1310, 12opeq12d 4814 . . . 4 ((𝑥𝐴𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ = ⟨𝐴, 𝐵⟩)
148, 13nfceqdf 2975 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
154, 5, 14syl2anc 586 . 2 (𝜑 → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
163, 15mpbii 235 1 (𝜑𝑥𝐴, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1534   = wceq 1536  wcel 2113  {cab 2802  wnfc 2964  cop 4576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577
This theorem is referenced by:  nfbrd  5115  dfid3  5465  nfovd  7188
  Copyright terms: Public domain W3C validator