Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfopdALT | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nfop 4817. This shows how the deduction version of a not-free theorem such as nfop 4817 can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfopdALT.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfopdALT.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfopdALT | ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopdALT.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | nfopdALT.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
3 | abidnf 3633 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
5 | abidnf 3633 | . . . 4 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) |
7 | 4, 6 | opeq12d 4809 | . 2 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 〈{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}〉 = 〈𝐴, 𝐵〉) |
8 | nfaba1 2914 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
9 | nfaba1 2914 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
10 | 8, 9 | nfop 4817 | . 2 ⊢ Ⅎ𝑥〈{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}〉 |
11 | 1, 2, 7, 10 | nfded2 36909 | 1 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |