Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfopdALT Structured version   Visualization version   GIF version

Theorem nfopdALT 38953
Description: Deduction version of bound-variable hypothesis builder nfop 4894. This shows how the deduction version of a not-free theorem such as nfop 4894 can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfopdALT.1 (𝜑𝑥𝐴)
nfopdALT.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfopdALT (𝜑𝑥𝐴, 𝐵⟩)

Proof of Theorem nfopdALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfopdALT.1 . 2 (𝜑𝑥𝐴)
2 nfopdALT.2 . 2 (𝜑𝑥𝐵)
3 abidnf 3711 . . . 4 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
43adantr 480 . . 3 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
5 abidnf 3711 . . . 4 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
65adantl 481 . . 3 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
74, 6opeq12d 4886 . 2 ((𝑥𝐴𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ = ⟨𝐴, 𝐵⟩)
8 nfaba1 2911 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
9 nfaba1 2911 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
108, 9nfop 4894 . 2 𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩
111, 2, 7, 10nfded2 38950 1 (𝜑𝑥𝐴, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2106  {cab 2712  wnfc 2888  cop 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator