Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfopdALT Structured version   Visualization version   GIF version

Theorem nfopdALT 37841
Description: Deduction version of bound-variable hypothesis builder nfop 4890. This shows how the deduction version of a not-free theorem such as nfop 4890 can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfopdALT.1 (𝜑𝑥𝐴)
nfopdALT.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfopdALT (𝜑𝑥𝐴, 𝐵⟩)

Proof of Theorem nfopdALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfopdALT.1 . 2 (𝜑𝑥𝐴)
2 nfopdALT.2 . 2 (𝜑𝑥𝐵)
3 abidnf 3699 . . . 4 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
43adantr 482 . . 3 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
5 abidnf 3699 . . . 4 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
65adantl 483 . . 3 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
74, 6opeq12d 4882 . 2 ((𝑥𝐴𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ = ⟨𝐴, 𝐵⟩)
8 nfaba1 2912 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
9 nfaba1 2912 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
108, 9nfop 4890 . 2 𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩
111, 2, 7, 10nfded2 37838 1 (𝜑𝑥𝐴, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1540   = wceq 1542  wcel 2107  {cab 2710  wnfc 2884  cop 4635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator