MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5613
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5586 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2893 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2893 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1903 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5139 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2904 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2886  {copab 5132   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-opab 5133  df-xp 5586
This theorem is referenced by:  opeliunxp  5645  nfres  5882  mpomptsx  7877  dmmpossx  7879  fmpox  7880  ovmptss  7904  nfdju  9596  axcc2  10124  fsum2dlem  15410  fsumcom2  15414  fprod2dlem  15618  fprodcom2  15622  gsumcom2  19491  prdsdsf  23428  prdsxmet  23430  djussxp2  30886  aciunf1lem  30901  gsumpart  31217  esum2dlem  31960  poimirlem16  35720  poimirlem19  35723  dvnprodlem1  43377  stoweidlem21  43452  stoweidlem47  43478  opeliun2xp  45556  dmmpossx2  45560
  Copyright terms: Public domain W3C validator