MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5622
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5595 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2894 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2894 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1902 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5143 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2905 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  wnfc 2887  {copab 5136   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-opab 5137  df-xp 5595
This theorem is referenced by:  opeliunxp  5654  nfres  5893  mpomptsx  7904  dmmpossx  7906  fmpox  7907  ovmptss  7933  nfdju  9665  axcc2  10193  fsum2dlem  15482  fsumcom2  15486  fprod2dlem  15690  fprodcom2  15694  gsumcom2  19576  prdsdsf  23520  prdsxmet  23522  djussxp2  30985  aciunf1lem  30999  gsumpart  31315  esum2dlem  32060  poimirlem16  35793  poimirlem19  35796  dvnprodlem1  43487  stoweidlem21  43562  stoweidlem47  43588  opeliun2xp  45668  dmmpossx2  45672
  Copyright terms: Public domain W3C validator