| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxp | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
| nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5627 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
| 2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 7 | 6 | nfopab 5164 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2113 Ⅎwnfc 2880 {copab 5157 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-opab 5158 df-xp 5627 |
| This theorem is referenced by: opeliunxp 5688 opeliun2xp 5689 nfres 5937 mpomptsx 8005 dmmpossx 8007 fmpox 8008 ovmptss 8032 nfdju 9811 axcc2 10339 fsum2dlem 15684 fsumcom2 15688 fprod2dlem 15894 fprodcom2 15898 gsumcom2 19895 prdsdsf 24302 prdsxmet 24304 iunxpssiun1 32569 djussxp2 32652 aciunf1lem 32666 gsumpart 33074 esum2dlem 34177 poimirlem16 37749 poimirlem19 37752 dvnprodlem1 46106 stoweidlem21 46181 stoweidlem47 46207 dmmpossx2 48499 |
| Copyright terms: Public domain | W3C validator |