MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5656
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5629 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2883 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5164 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2889 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2876  {copab 5157   × cxp 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-opab 5158  df-xp 5629
This theorem is referenced by:  opeliunxp  5690  opeliun2xp  5691  nfres  5936  mpomptsx  8006  dmmpossx  8008  fmpox  8009  ovmptss  8033  nfdju  9822  axcc2  10350  fsum2dlem  15696  fsumcom2  15700  fprod2dlem  15906  fprodcom2  15910  gsumcom2  19873  prdsdsf  24272  prdsxmet  24274  iunxpssiun1  32531  djussxp2  32610  aciunf1lem  32624  gsumpart  33029  esum2dlem  34078  poimirlem16  37635  poimirlem19  37638  dvnprodlem1  45947  stoweidlem21  46022  stoweidlem47  46048  dmmpossx2  48341
  Copyright terms: Public domain W3C validator