Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfxp | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5586 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
7 | 6 | nfopab 5139 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Ⅎwnfc 2886 {copab 5132 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-opab 5133 df-xp 5586 |
This theorem is referenced by: opeliunxp 5645 nfres 5882 mpomptsx 7877 dmmpossx 7879 fmpox 7880 ovmptss 7904 nfdju 9596 axcc2 10124 fsum2dlem 15410 fsumcom2 15414 fprod2dlem 15618 fprodcom2 15622 gsumcom2 19491 prdsdsf 23428 prdsxmet 23430 djussxp2 30886 aciunf1lem 30901 gsumpart 31217 esum2dlem 31960 poimirlem16 35720 poimirlem19 35723 dvnprodlem1 43377 stoweidlem21 43452 stoweidlem47 43478 opeliun2xp 45556 dmmpossx2 45560 |
Copyright terms: Public domain | W3C validator |