Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfxp | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5596 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfan 1906 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
7 | 6 | nfopab 5148 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2907 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2110 Ⅎwnfc 2889 {copab 5141 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-opab 5142 df-xp 5596 |
This theorem is referenced by: opeliunxp 5655 nfres 5892 mpomptsx 7897 dmmpossx 7899 fmpox 7900 ovmptss 7924 nfdju 9666 axcc2 10194 fsum2dlem 15480 fsumcom2 15484 fprod2dlem 15688 fprodcom2 15692 gsumcom2 19574 prdsdsf 23518 prdsxmet 23520 djussxp2 30981 aciunf1lem 30995 gsumpart 31311 esum2dlem 32056 poimirlem16 35789 poimirlem19 35792 dvnprodlem1 43458 stoweidlem21 43533 stoweidlem47 43559 opeliun2xp 45637 dmmpossx2 45641 |
Copyright terms: Public domain | W3C validator |