MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5623
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5596 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2896 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2896 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1906 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5148 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2907 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2110  wnfc 2889  {copab 5141   × cxp 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-opab 5142  df-xp 5596
This theorem is referenced by:  opeliunxp  5655  nfres  5892  mpomptsx  7897  dmmpossx  7899  fmpox  7900  ovmptss  7924  nfdju  9666  axcc2  10194  fsum2dlem  15480  fsumcom2  15484  fprod2dlem  15688  fprodcom2  15692  gsumcom2  19574  prdsdsf  23518  prdsxmet  23520  djussxp2  30981  aciunf1lem  30995  gsumpart  31311  esum2dlem  32056  poimirlem16  35789  poimirlem19  35792  dvnprodlem1  43458  stoweidlem21  43533  stoweidlem47  43559  opeliun2xp  45637  dmmpossx2  45641
  Copyright terms: Public domain W3C validator