MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5671
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5644 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2883 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5176 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2889 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2876  {copab 5169   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-opab 5170  df-xp 5644
This theorem is referenced by:  opeliunxp  5705  opeliun2xp  5706  nfres  5952  mpomptsx  8043  dmmpossx  8045  fmpox  8046  ovmptss  8072  nfdju  9860  axcc2  10390  fsum2dlem  15736  fsumcom2  15740  fprod2dlem  15946  fprodcom2  15950  gsumcom2  19905  prdsdsf  24255  prdsxmet  24257  iunxpssiun1  32497  djussxp2  32572  aciunf1lem  32586  gsumpart  32997  esum2dlem  34082  poimirlem16  37630  poimirlem19  37633  dvnprodlem1  45944  stoweidlem21  46019  stoweidlem47  46045  dmmpossx2  48325
  Copyright terms: Public domain W3C validator