MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5674
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5647 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2884 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2884 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5179 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2890 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2877  {copab 5172   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-opab 5173  df-xp 5647
This theorem is referenced by:  opeliunxp  5708  opeliun2xp  5709  nfres  5955  mpomptsx  8046  dmmpossx  8048  fmpox  8049  ovmptss  8075  nfdju  9867  axcc2  10397  fsum2dlem  15743  fsumcom2  15747  fprod2dlem  15953  fprodcom2  15957  gsumcom2  19912  prdsdsf  24262  prdsxmet  24264  iunxpssiun1  32504  djussxp2  32579  aciunf1lem  32593  gsumpart  33004  esum2dlem  34089  poimirlem16  37637  poimirlem19  37640  dvnprodlem1  45951  stoweidlem21  46026  stoweidlem47  46052  dmmpossx2  48329
  Copyright terms: Public domain W3C validator