MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5692
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5665 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2891 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2891 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5193 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2897 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2884  {copab 5186   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-opab 5187  df-xp 5665
This theorem is referenced by:  opeliunxp  5726  opeliun2xp  5727  nfres  5973  mpomptsx  8068  dmmpossx  8070  fmpox  8071  ovmptss  8097  nfdju  9926  axcc2  10456  fsum2dlem  15791  fsumcom2  15795  fprod2dlem  16001  fprodcom2  16005  gsumcom2  19961  prdsdsf  24311  prdsxmet  24313  iunxpssiun1  32554  djussxp2  32631  aciunf1lem  32645  gsumpart  33056  esum2dlem  34128  poimirlem16  37665  poimirlem19  37668  dvnprodlem1  45942  stoweidlem21  46017  stoweidlem47  46043  dmmpossx2  48279
  Copyright terms: Public domain W3C validator