Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfxp | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5595 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
7 | 6 | nfopab 5143 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 Ⅎwnfc 2887 {copab 5136 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-opab 5137 df-xp 5595 |
This theorem is referenced by: opeliunxp 5654 nfres 5893 mpomptsx 7904 dmmpossx 7906 fmpox 7907 ovmptss 7933 nfdju 9665 axcc2 10193 fsum2dlem 15482 fsumcom2 15486 fprod2dlem 15690 fprodcom2 15694 gsumcom2 19576 prdsdsf 23520 prdsxmet 23522 djussxp2 30985 aciunf1lem 30999 gsumpart 31315 esum2dlem 32060 poimirlem16 35793 poimirlem19 35796 dvnprodlem1 43487 stoweidlem21 43562 stoweidlem47 43588 opeliun2xp 45668 dmmpossx2 45672 |
Copyright terms: Public domain | W3C validator |