MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5664
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5637 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2883 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5171 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2889 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2876  {copab 5164   × cxp 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-opab 5165  df-xp 5637
This theorem is referenced by:  opeliunxp  5698  opeliun2xp  5699  nfres  5941  mpomptsx  8022  dmmpossx  8024  fmpox  8025  ovmptss  8049  nfdju  9836  axcc2  10366  fsum2dlem  15712  fsumcom2  15716  fprod2dlem  15922  fprodcom2  15926  gsumcom2  19881  prdsdsf  24231  prdsxmet  24233  iunxpssiun1  32470  djussxp2  32545  aciunf1lem  32559  gsumpart  32970  esum2dlem  34055  poimirlem16  37603  poimirlem19  37606  dvnprodlem1  45917  stoweidlem21  45992  stoweidlem47  46018  dmmpossx2  48298
  Copyright terms: Public domain W3C validator