| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxp | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
| nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5617 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
| 2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 7 | 6 | nfopab 5155 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 Ⅎwnfc 2879 {copab 5148 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: opeliunxp 5678 opeliun2xp 5679 nfres 5925 mpomptsx 7991 dmmpossx 7993 fmpox 7994 ovmptss 8018 nfdju 9795 axcc2 10323 fsum2dlem 15672 fsumcom2 15676 fprod2dlem 15882 fprodcom2 15886 gsumcom2 19882 prdsdsf 24277 prdsxmet 24279 iunxpssiun1 32540 djussxp2 32622 aciunf1lem 32636 gsumpart 33029 esum2dlem 34097 poimirlem16 37676 poimirlem19 37679 dvnprodlem1 45984 stoweidlem21 46059 stoweidlem47 46085 dmmpossx2 48368 |
| Copyright terms: Public domain | W3C validator |