MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5733
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5706 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2900 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2900 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1898 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5235 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2906 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2893  {copab 5228   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-opab 5229  df-xp 5706
This theorem is referenced by:  opeliunxp  5767  nfres  6011  mpomptsx  8105  dmmpossx  8107  fmpox  8108  ovmptss  8134  nfdju  9976  axcc2  10506  fsum2dlem  15818  fsumcom2  15822  fprod2dlem  16028  fprodcom2  16032  gsumcom2  20017  prdsdsf  24398  prdsxmet  24400  djussxp2  32666  aciunf1lem  32680  gsumpart  33038  esum2dlem  34056  poimirlem16  37596  poimirlem19  37599  dvnprodlem1  45867  stoweidlem21  45942  stoweidlem47  45968  opeliun2xp  48057  dmmpossx2  48061
  Copyright terms: Public domain W3C validator