MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5654
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5627 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2887 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2887 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1900 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5164 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2893 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2113  wnfc 2880  {copab 5157   × cxp 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-opab 5158  df-xp 5627
This theorem is referenced by:  opeliunxp  5688  opeliun2xp  5689  nfres  5937  mpomptsx  8005  dmmpossx  8007  fmpox  8008  ovmptss  8032  nfdju  9811  axcc2  10339  fsum2dlem  15684  fsumcom2  15688  fprod2dlem  15894  fprodcom2  15898  gsumcom2  19895  prdsdsf  24302  prdsxmet  24304  iunxpssiun1  32569  djussxp2  32652  aciunf1lem  32666  gsumpart  33074  esum2dlem  34177  poimirlem16  37749  poimirlem19  37752  dvnprodlem1  46106  stoweidlem21  46181  stoweidlem47  46207  dmmpossx2  48499
  Copyright terms: Public domain W3C validator