MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxp Structured version   Visualization version   GIF version

Theorem nfxp 5644
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5617 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2886 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2886 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1900 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 5155 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2892 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  wnfc 2879  {copab 5148   × cxp 5609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-opab 5149  df-xp 5617
This theorem is referenced by:  opeliunxp  5678  opeliun2xp  5679  nfres  5925  mpomptsx  7991  dmmpossx  7993  fmpox  7994  ovmptss  8018  nfdju  9795  axcc2  10323  fsum2dlem  15672  fsumcom2  15676  fprod2dlem  15882  fprodcom2  15886  gsumcom2  19882  prdsdsf  24277  prdsxmet  24279  iunxpssiun1  32540  djussxp2  32622  aciunf1lem  32636  gsumpart  33029  esum2dlem  34097  poimirlem16  37676  poimirlem19  37679  dvnprodlem1  45984  stoweidlem21  46059  stoweidlem47  46085  dmmpossx2  48368
  Copyright terms: Public domain W3C validator