| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxp | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
| nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5637 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
| 2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 7 | 6 | nfopab 5171 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 {copab 5164 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: opeliunxp 5698 opeliun2xp 5699 nfres 5941 mpomptsx 8022 dmmpossx 8024 fmpox 8025 ovmptss 8049 nfdju 9836 axcc2 10366 fsum2dlem 15712 fsumcom2 15716 fprod2dlem 15922 fprodcom2 15926 gsumcom2 19881 prdsdsf 24231 prdsxmet 24233 iunxpssiun1 32470 djussxp2 32545 aciunf1lem 32559 gsumpart 32970 esum2dlem 34055 poimirlem16 37603 poimirlem19 37606 dvnprodlem1 45917 stoweidlem21 45992 stoweidlem47 46018 dmmpossx2 48298 |
| Copyright terms: Public domain | W3C validator |