Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfxp | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5557 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfan 1907 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
7 | 6 | nfopab 5122 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∈ wcel 2110 Ⅎwnfc 2884 {copab 5115 × cxp 5549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-opab 5116 df-xp 5557 |
This theorem is referenced by: opeliunxp 5616 nfres 5853 mpomptsx 7834 dmmpossx 7836 fmpox 7837 ovmptss 7861 nfdju 9523 axcc2 10051 fsum2dlem 15334 fsumcom2 15338 fprod2dlem 15542 fprodcom2 15546 gsumcom2 19360 prdsdsf 23265 prdsxmet 23267 djussxp2 30704 aciunf1lem 30719 gsumpart 31034 esum2dlem 31772 poimirlem16 35530 poimirlem19 35533 dvnprodlem1 43162 stoweidlem21 43237 stoweidlem47 43263 opeliun2xp 45341 dmmpossx2 45345 |
Copyright terms: Public domain | W3C validator |