| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuex | Structured version Visualization version GIF version | ||
| Description: The disjoint union of sets is a set. For a shorter proof using djuss 9816 see djuexALT 9818. (Contributed by AV, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9797 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | snex 5375 | . . . . . 6 ⊢ {∅} ∈ V | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → {∅} ∈ V) |
| 4 | xpexg 7686 | . . . . 5 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ∈ V) | |
| 5 | 3, 4 | sylan 580 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ∈ V) |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐴) ∈ V) |
| 7 | snex 5375 | . . . . 5 ⊢ {1o} ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
| 9 | xpexg 7686 | . . . 4 ⊢ (({1o} ∈ V ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) | |
| 10 | 8, 9 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) |
| 11 | unexg 7679 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
| 12 | 6, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
| 13 | 1, 12 | eqeltrid 2832 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ∅c0 4284 {csn 4577 × cxp 5617 1oc1o 8381 ⊔ cdju 9794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-opab 5155 df-xp 5625 df-rel 5626 df-dju 9797 |
| This theorem is referenced by: djuexb 9805 updjud 9830 dju1dif 10067 pwdjuen 10076 alephadd 10471 gchhar 10573 |
| Copyright terms: Public domain | W3C validator |