MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuex Structured version   Visualization version   GIF version

Theorem djuex 9666
Description: The disjoint union of sets is a set. For a shorter proof using djuss 9678 see djuexALT 9680. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 9659 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 snex 5354 . . . . . 6 {∅} ∈ V
32a1i 11 . . . . 5 (𝐵𝑊 → {∅} ∈ V)
4 xpexg 7600 . . . . 5 (({∅} ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ∈ V)
53, 4sylan 580 . . . 4 ((𝐵𝑊𝐴𝑉) → ({∅} × 𝐴) ∈ V)
65ancoms 459 . . 3 ((𝐴𝑉𝐵𝑊) → ({∅} × 𝐴) ∈ V)
7 snex 5354 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 xpexg 7600 . . . 4 (({1o} ∈ V ∧ 𝐵𝑊) → ({1o} × 𝐵) ∈ V)
108, 9sylan 580 . . 3 ((𝐴𝑉𝐵𝑊) → ({1o} × 𝐵) ∈ V)
11 unexg 7599 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
126, 10, 11syl2anc 584 . 2 ((𝐴𝑉𝐵𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
131, 12eqeltrid 2843 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3432  cun 3885  c0 4256  {csn 4561   × cxp 5587  1oc1o 8290  cdju 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-opab 5137  df-xp 5595  df-rel 5596  df-dju 9659
This theorem is referenced by:  djuexb  9667  updjud  9692  dju1dif  9928  pwdjuen  9937  alephadd  10333  gchhar  10435
  Copyright terms: Public domain W3C validator