MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuex Structured version   Visualization version   GIF version

Theorem djuex 9339
Description: The disjoint union of sets is a set. For a shorter proof using djuss 9351 see djuexALT 9353. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 9332 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 snex 5334 . . . . . 6 {∅} ∈ V
32a1i 11 . . . . 5 (𝐵𝑊 → {∅} ∈ V)
4 xpexg 7475 . . . . 5 (({∅} ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ∈ V)
53, 4sylan 582 . . . 4 ((𝐵𝑊𝐴𝑉) → ({∅} × 𝐴) ∈ V)
65ancoms 461 . . 3 ((𝐴𝑉𝐵𝑊) → ({∅} × 𝐴) ∈ V)
7 snex 5334 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 xpexg 7475 . . . 4 (({1o} ∈ V ∧ 𝐵𝑊) → ({1o} × 𝐵) ∈ V)
108, 9sylan 582 . . 3 ((𝐴𝑉𝐵𝑊) → ({1o} × 𝐵) ∈ V)
11 unexg 7474 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
126, 10, 11syl2anc 586 . 2 ((𝐴𝑉𝐵𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
131, 12eqeltrid 2919 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  Vcvv 3496  cun 3936  c0 4293  {csn 4569   × cxp 5555  1oc1o 8097  cdju 9329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-opab 5131  df-xp 5563  df-rel 5564  df-dju 9332
This theorem is referenced by:  djuexb  9340  updjud  9365  dju1dif  9600  pwdjuen  9609  alephadd  10001  gchhar  10103
  Copyright terms: Public domain W3C validator