MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuex Structured version   Visualization version   GIF version

Theorem djuex 9837
Description: The disjoint union of sets is a set. For a shorter proof using djuss 9849 see djuexALT 9851. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 9830 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 snex 5386 . . . . . 6 {∅} ∈ V
32a1i 11 . . . . 5 (𝐵𝑊 → {∅} ∈ V)
4 xpexg 7706 . . . . 5 (({∅} ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ∈ V)
53, 4sylan 580 . . . 4 ((𝐵𝑊𝐴𝑉) → ({∅} × 𝐴) ∈ V)
65ancoms 458 . . 3 ((𝐴𝑉𝐵𝑊) → ({∅} × 𝐴) ∈ V)
7 snex 5386 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 xpexg 7706 . . . 4 (({1o} ∈ V ∧ 𝐵𝑊) → ({1o} × 𝐵) ∈ V)
108, 9sylan 580 . . 3 ((𝐴𝑉𝐵𝑊) → ({1o} × 𝐵) ∈ V)
11 unexg 7699 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
126, 10, 11syl2anc 584 . 2 ((𝐴𝑉𝐵𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
131, 12eqeltrid 2832 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3444  cun 3909  c0 4292  {csn 4585   × cxp 5629  1oc1o 8404  cdju 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-opab 5165  df-xp 5637  df-rel 5638  df-dju 9830
This theorem is referenced by:  djuexb  9838  updjud  9863  dju1dif  10102  pwdjuen  10111  alephadd  10506  gchhar  10608
  Copyright terms: Public domain W3C validator