MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuex Structured version   Visualization version   GIF version

Theorem djuex 9914
Description: The disjoint union of sets is a set. For a shorter proof using djuss 9926 see djuexALT 9928. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 9907 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 snex 5403 . . . . . 6 {∅} ∈ V
32a1i 11 . . . . 5 (𝐵𝑊 → {∅} ∈ V)
4 xpexg 7738 . . . . 5 (({∅} ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ∈ V)
53, 4sylan 580 . . . 4 ((𝐵𝑊𝐴𝑉) → ({∅} × 𝐴) ∈ V)
65ancoms 458 . . 3 ((𝐴𝑉𝐵𝑊) → ({∅} × 𝐴) ∈ V)
7 snex 5403 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 xpexg 7738 . . . 4 (({1o} ∈ V ∧ 𝐵𝑊) → ({1o} × 𝐵) ∈ V)
108, 9sylan 580 . . 3 ((𝐴𝑉𝐵𝑊) → ({1o} × 𝐵) ∈ V)
11 unexg 7731 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
126, 10, 11syl2anc 584 . 2 ((𝐴𝑉𝐵𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
131, 12eqeltrid 2837 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3457  cun 3922  c0 4306  {csn 4599   × cxp 5649  1oc1o 8467  cdju 9904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-opab 5179  df-xp 5657  df-rel 5658  df-dju 9907
This theorem is referenced by:  djuexb  9915  updjud  9940  dju1dif  10179  pwdjuen  10188  alephadd  10583  gchhar  10685
  Copyright terms: Public domain W3C validator