MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiin Structured version   Visualization version   GIF version

Theorem nfiin 5028
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2371. See nfiing 5030 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiin 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 5000 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2890 . . . 4 𝑦 𝑧𝐵
52, 4nfralw 3308 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2909 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2901 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2709  wnfc 2883  wral 3061   ciin 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-iin 5000
This theorem is referenced by:  iinab  5071  fnlimcnv  44682  fnlimfvre  44689  fnlimabslt  44694  iinhoiicc  45689  preimageiingt  45735  preimaleiinlt  45736  smflimlem6  45791  smflim  45792  smflim2  45821  smfsup  45829  smfsupmpt  45830  smfsupxr  45831  smfinflem  45832  smfinf  45833  smfinfmpt  45834  smflimsup  45843  smfliminf  45846  fsupdm  45857  finfdm  45861
  Copyright terms: Public domain W3C validator