Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiin | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiing 4957 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfiin | ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | 3 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
5 | 2, 4 | nfralw 3151 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
6 | 5 | nfab 2913 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∀wral 3064 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-iin 4927 |
This theorem is referenced by: iinab 4997 fnlimcnv 43208 fnlimfvre 43215 fnlimabslt 43220 iinhoiicc 44212 preimageiingt 44257 preimaleiinlt 44258 smflimlem6 44311 smflim 44312 smflim2 44339 smfsup 44347 smfsupmpt 44348 smfsupxr 44349 smfinflem 44350 smfinf 44351 smfinfmpt 44352 smflimsup 44361 smfliminf 44364 |
Copyright terms: Public domain | W3C validator |