| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiin | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2371. See nfiing 4992 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
| nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfiin | ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4960 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | 3 | nfcri 2884 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 5 | 2, 4 | nfralw 3287 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
| 6 | 5 | nfab 2898 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 ∀wral 3045 ∩ ciin 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-iin 4960 |
| This theorem is referenced by: iinab 5034 fnlimcnv 45658 fnlimfvre 45665 fnlimabslt 45670 iinhoiicc 46665 preimageiingt 46711 preimaleiinlt 46712 smflimlem6 46767 smflim 46768 smflim2 46797 smfsup 46805 smfsupmpt 46806 smfsupxr 46807 smfinflem 46808 smfinf 46809 smflimsup 46819 smfliminf 46822 fsupdm 46833 finfdm 46837 |
| Copyright terms: Public domain | W3C validator |