MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiin Structured version   Visualization version   GIF version

Theorem nfiin 4972
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiing 4974 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiin 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4942 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2886 . . . 4 𝑦 𝑧𝐵
52, 4nfralw 3279 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2900 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2892 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  {cab 2709  wnfc 2879  wral 3047   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-iin 4942
This theorem is referenced by:  iinab  5014  fnlimcnv  45775  fnlimfvre  45782  fnlimabslt  45787  iinhoiicc  46782  preimageiingt  46828  preimaleiinlt  46829  smflimlem6  46884  smflim  46885  smflim2  46914  smfsup  46922  smfsupmpt  46923  smfsupxr  46924  smfinflem  46925  smfinf  46926  smflimsup  46936  smfliminf  46939  fsupdm  46950  finfdm  46954
  Copyright terms: Public domain W3C validator