MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiin Structured version   Visualization version   GIF version

Theorem nfiin 5029
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2375. See nfiing 5031 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiin 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4999 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2895 . . . 4 𝑦 𝑧𝐵
52, 4nfralw 3309 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2909 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2901 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2712  wnfc 2888  wral 3059   ciin 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-iin 4999
This theorem is referenced by:  iinab  5073  fnlimcnv  45623  fnlimfvre  45630  fnlimabslt  45635  iinhoiicc  46630  preimageiingt  46676  preimaleiinlt  46677  smflimlem6  46732  smflim  46733  smflim2  46762  smfsup  46770  smfsupmpt  46771  smfsupxr  46772  smfinflem  46773  smfinf  46774  smflimsup  46784  smfliminf  46787  fsupdm  46798  finfdm  46802
  Copyright terms: Public domain W3C validator