MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiin Structured version   Visualization version   GIF version

Theorem nfiin 4990
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2371. See nfiing 4992 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiin 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4960 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2884 . . . 4 𝑦 𝑧𝐵
52, 4nfralw 3287 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2898 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2890 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2708  wnfc 2877  wral 3045   ciin 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-iin 4960
This theorem is referenced by:  iinab  5034  fnlimcnv  45658  fnlimfvre  45665  fnlimabslt  45670  iinhoiicc  46665  preimageiingt  46711  preimaleiinlt  46712  smflimlem6  46767  smflim  46768  smflim2  46797  smfsup  46805  smfsupmpt  46806  smfsupxr  46807  smfinflem  46808  smfinf  46809  smflimsup  46819  smfliminf  46822  fsupdm  46833  finfdm  46837
  Copyright terms: Public domain W3C validator