MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiin Structured version   Visualization version   GIF version

Theorem nfiin 4955
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiing 4957 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiin 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4927 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2894 . . . 4 𝑦 𝑧𝐵
52, 4nfralw 3151 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2913 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2905 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2715  wnfc 2887  wral 3064   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-iin 4927
This theorem is referenced by:  iinab  4997  fnlimcnv  43208  fnlimfvre  43215  fnlimabslt  43220  iinhoiicc  44212  preimageiingt  44257  preimaleiinlt  44258  smflimlem6  44311  smflim  44312  smflim2  44339  smfsup  44347  smfsupmpt  44348  smfsupxr  44349  smfinflem  44350  smfinf  44351  smfinfmpt  44352  smflimsup  44361  smfliminf  44364
  Copyright terms: Public domain W3C validator