| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiin | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2375. See nfiing 5008 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
| nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfiin | ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4976 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | 3 | nfcri 2889 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 5 | 2, 4 | nfralw 3295 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
| 6 | 5 | nfab 2903 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 {cab 2712 Ⅎwnfc 2882 ∀wral 3050 ∩ ciin 4974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-iin 4976 |
| This theorem is referenced by: iinab 5050 fnlimcnv 45627 fnlimfvre 45634 fnlimabslt 45639 iinhoiicc 46634 preimageiingt 46680 preimaleiinlt 46681 smflimlem6 46736 smflim 46737 smflim2 46766 smfsup 46774 smfsupmpt 46775 smfsupxr 46776 smfinflem 46777 smfinf 46778 smflimsup 46788 smfliminf 46791 fsupdm 46802 finfdm 46806 |
| Copyright terms: Public domain | W3C validator |