| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiin | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2370. See nfiing 4986 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
| nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfiin | ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4954 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | 3 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 5 | 2, 4 | nfralw 3283 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
| 6 | 5 | nfab 2897 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 ∀wral 3044 ∩ ciin 4952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-iin 4954 |
| This theorem is referenced by: iinab 5027 fnlimcnv 45658 fnlimfvre 45665 fnlimabslt 45670 iinhoiicc 46665 preimageiingt 46711 preimaleiinlt 46712 smflimlem6 46767 smflim 46768 smflim2 46797 smfsup 46805 smfsupmpt 46806 smfsupxr 46807 smfinflem 46808 smfinf 46809 smflimsup 46819 smfliminf 46822 fsupdm 46833 finfdm 46837 |
| Copyright terms: Public domain | W3C validator |