![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiin | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2365. See nfiing 5029 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfiin | ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4999 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | 3 | nfcri 2882 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
5 | 2, 4 | nfralw 3299 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
6 | 5 | nfab 2898 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 {cab 2702 Ⅎwnfc 2875 ∀wral 3051 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-iin 4999 |
This theorem is referenced by: iinab 5071 fnlimcnv 45118 fnlimfvre 45125 fnlimabslt 45130 iinhoiicc 46125 preimageiingt 46171 preimaleiinlt 46172 smflimlem6 46227 smflim 46228 smflim2 46257 smfsup 46265 smfsupmpt 46266 smfsupxr 46267 smfinflem 46268 smfinf 46269 smfinfmpt 46270 smflimsup 46279 smfliminf 46282 fsupdm 46293 finfdm 46297 |
Copyright terms: Public domain | W3C validator |